Zhedanov's Algebra AW(3) and the Double Affine Hecke Algebra in the Rank One Case. II. The Spherical Subalgebra

This paper builds on the previous paper by the author, where a relationship between Zhedanov's algebra AW(3) and the double affine Hecke algebra (DAHA) corresponding to the Askey-Wilson polynomials was established. It is shown here that the spherical subalgebra of this DAHA is isomorphic to AW(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2008
1. Verfasser: Koornwinder, T.H.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149029
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Zhedanov's Algebra AW(3) and the Double Affine Hecke Algebra in the Rank One Case. II. The Spherical Subalgebra / T.H. Koornwinder // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:This paper builds on the previous paper by the author, where a relationship between Zhedanov's algebra AW(3) and the double affine Hecke algebra (DAHA) corresponding to the Askey-Wilson polynomials was established. It is shown here that the spherical subalgebra of this DAHA is isomorphic to AW(3) with an additional relation that the Casimir operator equals an explicit constant. A similar result with q-shifted parameters holds for the antispherical subalgebra. Some theorems on centralizers and centers for the algebras under consideration will finally be proved as corollaries of the characterization of the spherical and antispherical subalgebra.
ISSN:1815-0659