Zhedanov's Algebra AW(3) and the Double Affine Hecke Algebra in the Rank One Case. II. The Spherical Subalgebra

This paper builds on the previous paper by the author, where a relationship between Zhedanov's algebra AW(3) and the double affine Hecke algebra (DAHA) corresponding to the Askey-Wilson polynomials was established. It is shown here that the spherical subalgebra of this DAHA is isomorphic to AW(...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2008
Main Author: Koornwinder, T.H.
Format: Article
Language:English
Published: Інститут математики НАН України 2008
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/149029
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Zhedanov's Algebra AW(3) and the Double Affine Hecke Algebra in the Rank One Case. II. The Spherical Subalgebra / T.H. Koornwinder // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 15 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:This paper builds on the previous paper by the author, where a relationship between Zhedanov's algebra AW(3) and the double affine Hecke algebra (DAHA) corresponding to the Askey-Wilson polynomials was established. It is shown here that the spherical subalgebra of this DAHA is isomorphic to AW(3) with an additional relation that the Casimir operator equals an explicit constant. A similar result with q-shifted parameters holds for the antispherical subalgebra. Some theorems on centralizers and centers for the algebras under consideration will finally be proved as corollaries of the characterization of the spherical and antispherical subalgebra.
ISSN:1815-0659