Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras

C*-algebraic Weyl quantization is extended by allowing also degenerate pre-symplectic forms for the Weyl relations with infinitely many degrees of freedom, and by starting out from enlarged classical Poisson algebras. A powerful tool is found in the construction of Poisson algebras and non-commutati...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2008
Автори: Honegger, R., Rieckers, A., Schlafer, L.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149035
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras / R. Honegger, A. Rieckers, L. Schlafer // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 61 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149035
record_format dspace
spelling Honegger, R.
Rieckers, A.
Schlafer, L.
2019-02-19T13:11:12Z
2019-02-19T13:11:12Z
2008
Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras / R. Honegger, A. Rieckers, L. Schlafer // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 61 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 46L65; 47L90; 81R15
https://nasplib.isofts.kiev.ua/handle/123456789/149035
C*-algebraic Weyl quantization is extended by allowing also degenerate pre-symplectic forms for the Weyl relations with infinitely many degrees of freedom, and by starting out from enlarged classical Poisson algebras. A powerful tool is found in the construction of Poisson algebras and non-commutative twisted Banach-*-algebras on the stage of measures on the not locally compact test function space. Already within this frame strict deformation quantization is obtained, but in terms of Banach-*-algebras instead of C*-algebras. Fourier transformation and representation theory of the measure Banach-*-algebras are combined with the theory of continuous projective group representations to arrive at the genuine C*-algebraic strict deformation quantization in the sense of Rieffel and Landsman. Weyl quantization is recognized to depend in the first step functorially on the (in general) infinite dimensional, pre-symplectic test function space; but in the second step one has to select a family of representations, indexed by the deformation parameter h. The latter ambiguity is in the present investigation connected with the choice of a folium of states, a structure, which does not necessarily require a Hilbert space representation.
This paper is a contribution to the Special Issue on Deformation Quantization.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras
spellingShingle Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras
Honegger, R.
Rieckers, A.
Schlafer, L.
title_short Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras
title_full Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras
title_fullStr Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras
title_full_unstemmed Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras
title_sort field-theoretic weyl deformation quantization of enlarged poisson algebras
author Honegger, R.
Rieckers, A.
Schlafer, L.
author_facet Honegger, R.
Rieckers, A.
Schlafer, L.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description C*-algebraic Weyl quantization is extended by allowing also degenerate pre-symplectic forms for the Weyl relations with infinitely many degrees of freedom, and by starting out from enlarged classical Poisson algebras. A powerful tool is found in the construction of Poisson algebras and non-commutative twisted Banach-*-algebras on the stage of measures on the not locally compact test function space. Already within this frame strict deformation quantization is obtained, but in terms of Banach-*-algebras instead of C*-algebras. Fourier transformation and representation theory of the measure Banach-*-algebras are combined with the theory of continuous projective group representations to arrive at the genuine C*-algebraic strict deformation quantization in the sense of Rieffel and Landsman. Weyl quantization is recognized to depend in the first step functorially on the (in general) infinite dimensional, pre-symplectic test function space; but in the second step one has to select a family of representations, indexed by the deformation parameter h. The latter ambiguity is in the present investigation connected with the choice of a folium of states, a structure, which does not necessarily require a Hilbert space representation.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149035
citation_txt Field-Theoretic Weyl Deformation Quantization of Enlarged Poisson Algebras / R. Honegger, A. Rieckers, L. Schlafer // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 61 назв. — англ.
work_keys_str_mv AT honeggerr fieldtheoreticweyldeformationquantizationofenlargedpoissonalgebras
AT rieckersa fieldtheoreticweyldeformationquantizationofenlargedpoissonalgebras
AT schlaferl fieldtheoreticweyldeformationquantizationofenlargedpoissonalgebras
first_indexed 2025-12-07T17:26:24Z
last_indexed 2025-12-07T17:26:24Z
_version_ 1850871260694708224