Rapidities and Observable 3-Velocities in the Flat Finslerian Event Space with Entirely Broken 3D Isotropy

We study the geometric phase transitions that accompany the dynamic rearrangement of vacuum under spontaneous violation of initial gauge symmetry. The rearrangement may give rise to condensates of three types, namely the scalar, axially symmetric, and entirely anisotropic condensates. The flat space...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2008
Main Author: Bogoslovsky, G.Yu.
Format: Article
Language:English
Published: Інститут математики НАН України 2008
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/149038
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Rapidities and Observable 3-Velocities in the Flat Finslerian Event Space with Entirely Broken 3D Isotropy / G.Yu. Bogoslovsky // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 33 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We study the geometric phase transitions that accompany the dynamic rearrangement of vacuum under spontaneous violation of initial gauge symmetry. The rearrangement may give rise to condensates of three types, namely the scalar, axially symmetric, and entirely anisotropic condensates. The flat space-time keeps being the Minkowski space in the only case of scalar condensate. The anisotropic condensate having arisen, the respective anisotropy occurs also in space-time. In this case the space-time filled with axially symmetric condensate proves to be a flat relativistically invariant Finslerian space with partially broken 3D isotropy, while the space-time filled with entirely anisotropic condensate proves to be a flat relativistically invariant Finslerian space with entirely broken 3D isotropy. The two Finslerian space types are described briefly in the extended introduction to the work, while the original part of the latter is devoted to determining observable 3-velocities in the entirely anisotropic Finslerian event space. The main difficulties that are overcome in solving that problem arose from the nonstandard form of the light cone equation and from the necessity of correct introducing of a norm in the linear vector space of rapidities.
ISSN:1815-0659