Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems

In this paper we present an overview of the connection between completely integrable systems and the background geometry of the flow. This relation is better seen when using a group-based concept of moving frame introduced by Fels and Olver in [Acta Appl. Math. 51 (1998), 161-213; 55 (1999), 127-208...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2008
1. Verfasser: Beffa, G.M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149050
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems / G.M. Beffa // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 51 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149050
record_format dspace
spelling Beffa, G.M.
2019-02-19T13:19:38Z
2019-02-19T13:19:38Z
2008
Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems / G.M. Beffa // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 51 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 37K25; 53A55
https://nasplib.isofts.kiev.ua/handle/123456789/149050
In this paper we present an overview of the connection between completely integrable systems and the background geometry of the flow. This relation is better seen when using a group-based concept of moving frame introduced by Fels and Olver in [Acta Appl. Math. 51 (1998), 161-213; 55 (1999), 127-208]. The paper discusses the close connection between different types of geometries and the type of equations they realize. In particular, we describe the direct relation between symmetric spaces and equations of KdV-type, and the possible geometric origins of this connection.
This paper is a contribution to the Proceedings of the Seventh International Conference “Symmetry in Nonlinear Mathematical Physics” (June 24–30, 2007, Kyiv, Ukraine).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
spellingShingle Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
Beffa, G.M.
title_short Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
title_full Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
title_fullStr Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
title_full_unstemmed Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
title_sort geometric realizations of bi-hamiltonian completely integrable systems
author Beffa, G.M.
author_facet Beffa, G.M.
publishDate 2008
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this paper we present an overview of the connection between completely integrable systems and the background geometry of the flow. This relation is better seen when using a group-based concept of moving frame introduced by Fels and Olver in [Acta Appl. Math. 51 (1998), 161-213; 55 (1999), 127-208]. The paper discusses the close connection between different types of geometries and the type of equations they realize. In particular, we describe the direct relation between symmetric spaces and equations of KdV-type, and the possible geometric origins of this connection.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149050
citation_txt Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems / G.M. Beffa // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 51 назв. — англ.
work_keys_str_mv AT beffagm geometricrealizationsofbihamiltoniancompletelyintegrablesystems
first_indexed 2025-12-01T23:49:58Z
last_indexed 2025-12-01T23:49:58Z
_version_ 1850861225696559104