Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems
In this paper we present an overview of the connection between completely integrable systems and the background geometry of the flow. This relation is better seen when using a group-based concept of moving frame introduced by Fels and Olver in [Acta Appl. Math. 51 (1998), 161-213; 55 (1999), 127-208...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2008 |
| 1. Verfasser: | Beffa, G.M. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2008
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/149050 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Geometric Realizations of Bi-Hamiltonian Completely Integrable Systems / G.M. Beffa // Symmetry, Integrability and Geometry: Methods and Applications. — 2008. — Т. 4. — Бібліогр.: 51 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
Completely Integrable Contact Hamiltonian Systems and Toric Contact Structures on S²×S³
von: Boyer, C.P.
Veröffentlicht: (2011) -
On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems
von: Santoprete, M.
Veröffentlicht: (2015) -
Bi-Hamiltonian Systems in (2+1) and Higher Dimensions Defined by Novikov Algebras
von: Szablikowski, B.M.
Veröffentlicht: (2019) -
Integrable Flows for Starlike Curves in Centroaffine Space
von: Calini, A., et al.
Veröffentlicht: (2013) -
On a Recently Introduced Fifth-Order Bi-Hamiltonian Equation and Trivially Related Hamiltonian Operators
von: Talati, D., et al.
Veröffentlicht: (2011)