Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge
The paper is related to the studying the effect of the external constant magnetic field on the dynamics and power of the self-sustained plasma-beam discharge. It is shown that a relatively small (up to 1 kG) magnetic field of a specific configuration allows to increase the power inputted into the...
Gespeichert in:
| Datum: | 2018 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
| Schriftenreihe: | Вопросы атомной науки и техники |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/149056 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge / Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Ryabchikov, I.N. Sereda, D.A. Boloto, A.F. Tseluyko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 198-201. — Бібліогр.: 7 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149056 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1490562025-02-09T11:25:10Z Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge Вплив зовнішнього магнітного поля на динамiку та потужність самостійного плазмово-пучкового розряду Влияние внешнего магнитного поля на динамику и мощность самостоятельного плазменно-пучкового разряда Hrechko, Ya.O. Azarenkov, N.A. Babenko, Ie.V. Ryabchikov, D.L. Sereda, I.N. Boloto, D.A. Tseluyko, A.F. Низкотемпературная плазма и плазменные технологии The paper is related to the studying the effect of the external constant magnetic field on the dynamics and power of the self-sustained plasma-beam discharge. It is shown that a relatively small (up to 1 kG) magnetic field of a specific configuration allows to increase the power inputted into the discharge at several times. The distinctive features of the discharge in the presence of the external constant magnetic field are noted. Робота пов’язана з дослідженням впливу зовнішнього постійного магнітного поля на динаміку і потужність самостійного плазмово-пучкового розряду. Показано, що відносно невелике (до 1 кГс) магнітне поле специфічної конфігурації дозволяє в декілька разів збільшити потужність, що вводиться в розряд. Відзначено відмінні особливості протікання розряду при наявності зовнішнього постійного магнітного поля. Работа связана с исследованием влияния внешнего постоянного магнитного поля на динамику и мощность самостоятельного плазменно-пучкового разряда. Показано, что относительно небольшое (до 1 кГс) магнитное поле специфической конфигурации позволяет в несколько раз увеличить вводимую в разряд мощность. Отмечены отличительные особенности протекания разряда при наличии внешнего постоянного магнитного поля. 2018 Article Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge / Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Ryabchikov, I.N. Sereda, D.A. Boloto, A.F. Tseluyko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 198-201. — Бібліогр.: 7 назв. — англ. 1562-6016 PACS: 52.58.Lq, 52.80.Tn, 52.80.Vp https://nasplib.isofts.kiev.ua/handle/123456789/149056 en Вопросы атомной науки и техники application/pdf Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| topic |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии |
| spellingShingle |
Низкотемпературная плазма и плазменные технологии Низкотемпературная плазма и плазменные технологии Hrechko, Ya.O. Azarenkov, N.A. Babenko, Ie.V. Ryabchikov, D.L. Sereda, I.N. Boloto, D.A. Tseluyko, A.F. Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge Вопросы атомной науки и техники |
| description |
The paper is related to the studying the effect of the external constant magnetic field on the dynamics and power
of the self-sustained plasma-beam discharge. It is shown that a relatively small (up to 1 kG) magnetic field of a
specific configuration allows to increase the power inputted into the discharge at several times. The distinctive
features of the discharge in the presence of the external constant magnetic field are noted. |
| format |
Article |
| author |
Hrechko, Ya.O. Azarenkov, N.A. Babenko, Ie.V. Ryabchikov, D.L. Sereda, I.N. Boloto, D.A. Tseluyko, A.F. |
| author_facet |
Hrechko, Ya.O. Azarenkov, N.A. Babenko, Ie.V. Ryabchikov, D.L. Sereda, I.N. Boloto, D.A. Tseluyko, A.F. |
| author_sort |
Hrechko, Ya.O. |
| title |
Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge |
| title_short |
Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge |
| title_full |
Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge |
| title_fullStr |
Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge |
| title_full_unstemmed |
Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge |
| title_sort |
effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| publishDate |
2018 |
| topic_facet |
Низкотемпературная плазма и плазменные технологии |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149056 |
| citation_txt |
Effect of the external magnetic field on the dynamics and power of the self-sustained plasma-beam discharge / Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Ryabchikov, I.N. Sereda, D.A. Boloto, A.F. Tseluyko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 198-201. — Бібліогр.: 7 назв. — англ. |
| series |
Вопросы атомной науки и техники |
| work_keys_str_mv |
AT hrechkoyao effectoftheexternalmagneticfieldonthedynamicsandpoweroftheselfsustainedplasmabeamdischarge AT azarenkovna effectoftheexternalmagneticfieldonthedynamicsandpoweroftheselfsustainedplasmabeamdischarge AT babenkoiev effectoftheexternalmagneticfieldonthedynamicsandpoweroftheselfsustainedplasmabeamdischarge AT ryabchikovdl effectoftheexternalmagneticfieldonthedynamicsandpoweroftheselfsustainedplasmabeamdischarge AT seredain effectoftheexternalmagneticfieldonthedynamicsandpoweroftheselfsustainedplasmabeamdischarge AT bolotoda effectoftheexternalmagneticfieldonthedynamicsandpoweroftheselfsustainedplasmabeamdischarge AT tseluykoaf effectoftheexternalmagneticfieldonthedynamicsandpoweroftheselfsustainedplasmabeamdischarge AT hrechkoyao vplivzovníšnʹogomagnítnogopolânadinamikutapotužnístʹsamostíjnogoplazmovopučkovogorozrâdu AT azarenkovna vplivzovníšnʹogomagnítnogopolânadinamikutapotužnístʹsamostíjnogoplazmovopučkovogorozrâdu AT babenkoiev vplivzovníšnʹogomagnítnogopolânadinamikutapotužnístʹsamostíjnogoplazmovopučkovogorozrâdu AT ryabchikovdl vplivzovníšnʹogomagnítnogopolânadinamikutapotužnístʹsamostíjnogoplazmovopučkovogorozrâdu AT seredain vplivzovníšnʹogomagnítnogopolânadinamikutapotužnístʹsamostíjnogoplazmovopučkovogorozrâdu AT bolotoda vplivzovníšnʹogomagnítnogopolânadinamikutapotužnístʹsamostíjnogoplazmovopučkovogorozrâdu AT tseluykoaf vplivzovníšnʹogomagnítnogopolânadinamikutapotužnístʹsamostíjnogoplazmovopučkovogorozrâdu AT hrechkoyao vliânievnešnegomagnitnogopolânadinamikuimoŝnostʹsamostoâtelʹnogoplazmennopučkovogorazrâda AT azarenkovna vliânievnešnegomagnitnogopolânadinamikuimoŝnostʹsamostoâtelʹnogoplazmennopučkovogorazrâda AT babenkoiev vliânievnešnegomagnitnogopolânadinamikuimoŝnostʹsamostoâtelʹnogoplazmennopučkovogorazrâda AT ryabchikovdl vliânievnešnegomagnitnogopolânadinamikuimoŝnostʹsamostoâtelʹnogoplazmennopučkovogorazrâda AT seredain vliânievnešnegomagnitnogopolânadinamikuimoŝnostʹsamostoâtelʹnogoplazmennopučkovogorazrâda AT bolotoda vliânievnešnegomagnitnogopolânadinamikuimoŝnostʹsamostoâtelʹnogoplazmennopučkovogorazrâda AT tseluykoaf vliânievnešnegomagnitnogopolânadinamikuimoŝnostʹsamostoâtelʹnogoplazmennopučkovogorazrâda |
| first_indexed |
2025-11-25T21:22:41Z |
| last_indexed |
2025-11-25T21:22:41Z |
| _version_ |
1849798962942312448 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2018. №6(118)
198 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 198-201.
EFFECT OF THE EXTERNAL MAGNETIC FIELD ON THE DYNAMICS
AND POWER OF THE SELF-SUSTAINED PLASMA-BEAM DISCHARGE
Ya.O. Hrechko, N.A. Azarenkov, Ie.V. Babenko, D.L. Ryabchikov,
I.N. Sereda, D.A. Boloto, A.F. Tseluyko
V.N. Karazin Kharkiv National University, Kharkiv, Ukraine
E-mail: yarikgrechko18@gmail.com
The paper is related to the studying the effect of the external constant magnetic field on the dynamics and power
of the self-sustained plasma-beam discharge. It is shown that a relatively small (up to 1 kG) magnetic field of a
specific configuration allows to increase the power inputted into the discharge at several times. The distinctive
features of the discharge in the presence of the external constant magnetic field are noted.
PACS: 52.58.Lq, 52.80.Tn, 52.80.Vp
INTRODUCTION
The energy input with a high power density (at the
level of 109 W/cm2 and higher) into the plasma opens
new possibilities both for fundamental research in
plasma physics and gas discharge, and in various fields
of engineering and technology. Such power densities
make it possible to obtain plasma with Debye sphere
which contains one ion, i.e. as it were a quasi-crystalline
plasma structure. In the technical field, such power
densities are used for generation of powerful (megawatt
and higher for one wavelength) directional radiation in
the extreme ultraviolet range from plasma of multiply
ionized atoms [1]. Here, due to volumetric radiation-
stimulated effects, the radiation intensity in the
longitudinal direction can be one or two orders of
magnitude greater than the radiation intensity in the
transverse direction. In the technology field – pulse
impact on solids at such power levels allows to
significantly modify their surface layer, giving unique
properties. This is achieved through intensive thermal
and deformation processes, when the structure and
phase composition radically change. As a result,
strength, wear resistance and corrosion resistance
increase [2].
A self-sustained plasma-beam discharge (SPBD)
gives a unique opportunity for energy input with a high
power density into the local plasma region [3]. Its
feature is that the acceleration of powerful electron
beam occurs on the space charge double layer in the
local area inside its gas discharge plasma [4]. This
electron beam immediately begins to give its energy
behind the acceleration zone. By controlling the double
layer location it is possible to form an electron beam
directly in front of the object where the energy input is
supposed (plasma, solid, other objects). And here there
is a fundamental difference from the case of external
injection of the electron beam, which was formed by
any accelerator. At high power levels, when charge
compensation is required to transport the beam, the
beam gives off a significant energy share in the plasma
of transport space, even if it is very short. (As a rule, the
beam penetration depth is determined by powerful
collective effects [5]).
The power level in SPBD can reach hundreds of
gigawatts. At discharge voltages Ud ~ 102…106 V, the
electron beam current can be Ib ~ 102…106 A. Even in
case of a system with a relatively low power
(Ud ~ 20 kV and Ib ~ 10 kA), the power density can
reach ~ 2…3 GW/cm2 by reducing the current channel
cross-section to S ~ 2…3 mm2. Here the search for new
acceptable control methods both double layer
parameters (hence, the electron beam energy and
current) and its location is important.
The aim of this work was to study the effect of the
external constant magnetic field on the SPBD dynamics
and the possibility of increasing the level of active
power inputted into the discharge.
1. EXPERIMENTAL SETUP
To implement the SPBD mode, a high-current
pulsed plasma diode of low-pressure was chosen. The
schematic representation of the discharge cell is shown
in Fig. 1.
Fig. 1. Schematic representation of the discharge cell of
high-current pulsed plasma diode
The diode was placed in a vacuum chamber and
included a rod high-voltage electrode HVE (at the initial
moment of time it was under positive potential) and a
tubular grounded electrode GrE. The diameter and
length of the tubular electrode were 1 and 3 cm,
respectively, and the diameter of the rod electrode was
0.5 cm. The distance between the electrodes was 5 cm.
To excite the SPBD at plasma concentrations above
1015 cm-3 with double layer formation near the rod
electrode, the working surface of the rod electrode did
not exceed 0.2 cm2 and was two orders of magnitude
smaller than the working surface of the tubular
electrode. For this purpose the rod electrode was tightly
+V0
C1
C2
id
Vign
HVE HDP DP
CI GrE
IgnE GI
MS
ISSN 1562-6016. ВАНТ. 2018. №6(118) 199
insulated by means of ceramics CI, so that only its end
remained open. To exclude the discharge excitation
from the walls, they were also insulated with a glass
insulator GI.
The diode pulsed power supply was carried out from
a low-inductance capacitor bank with a capacity of
C0 = 1.914 μF, which was charged to a voltage of
V0 = 4…14 kV and directly, without a switch, was
connected to the diode electrodes. The switch was the
discharge gap. The discharge was excited at a pressure
p ~ 10-6 Torr after filling the gap with a primary low-
density plasma due to a surface breakdown between the
tubular and ignition electrodes IgnE. The inductance of
the whole discharge circuit didn’t exceed 160 nH, which
provided a current up to 40 kA. The share of the
discharge gap inductance was at the level of 10 %, so its
minor changes had little effect on the discharge current.
The discharge included two stages: the initial high-
voltage stage after 1…10 μs was replaced by a high-
current stage with the current oscillations period
of ~ 3.5 μs. The high-voltage stage duration depended
on the charging voltage and the ignition power. The
formation of a dense ~ 1016…1017 cm-3 discharge
plasma occurred during the transition from the high-
voltage to the high-current stage under intense
evaporation conditions of the rod electrode working
surface and high-power ionization of vapour. The
energy for these processes was supplied by an electron
beam accelerated in the double layer, which throughout
the whole high-voltage stage was located near the rod
electrode. With the beginning of the high-current stage,
this double layer disappeared, but other double layers
periodically appeared and disappeared, changing their
localization and the potential drop magnitude. The
appearance of the next double layer was clearly seen as
a surge in the discharge active voltage.
To control the double layers location at the high-
current discharge stage and to increase the power
inputted into the discharge, an external magnetic field,
which was created by ring permanent magnets, was
used in the work. It is necessary to immediately make a
reservation that the external magnetic field was two
orders of magnitude less than the intrinsic magnetic
field of the current-carrying plasma cord. And this field
was by no means intended to be used to hold a plasma
cord. His goal was to form such a topology of the
primary plasma, which would later set a certain scenario
for the development of a high-current discharge with a
given place of double layers formation and parameters.
The permanent ring magnets with external and
internal diameters of 6 and 2.5 cm, respectively, had a
thickness of 0.9 cm. The magnetic field magnitude
varied due to the number of magnets in the magnetic
system MS. Optimal results were obtained for the
magnetic system with two ring magnets. A feature of
ring magnets is the presence of a magnetic field
inversion point, which arises from the bifurcation of
field fluxes. Part of the magnetic flux is closed through
the central hole, and a part – through the outer space
(Fig. 2). Such distribution of magnetic fluxes creates a
magnetic trap and magnetic barriers for the plasma. Due
to diamagnetism, the primary low-temperature plasma is
concentrated in the region near the field inversion point
and hardly overcomes the humps of the intensities Bmin
and Bmax.
Fig. 2. Magnetic field topology and the induction
distribution on the discharge axis for magnetic system
with two ring permanent magnets
The experiments were carried out for four positions
of the magnetic system regarding the high-voltage
electrode. In the first case, the electrode end was in the
region of minimal magnetic field minB = 0.235 kG, in
the second case – in the region of the magnetic field
inversion point Вinv = 0, in the third case – at the
intermediate point with magnetic field induction
~ 0.64 kG (the electrode end coincided with the
magnetic system end), in the fourth case – in the region
of the maximum magnetic field Bmax = 1.1 kG (in the
center of the magnetic system). The magnetic field
topology and the field induction distribution on the
discharge cell axis, corresponding to the four listed
cases, for magnetic system with two magnets are shown
in Fig. 2.
2. RESULTS AND DISCUSSIONS
The efficiency of energy input into the discharge
using an external magnetic field was determined by the
level of active power generated in the discharge. The
active power calculation was made on the basis of the
discharge current dynamics using the original method.
A full description of this method is presented in [6].
Fig. 3 shows the characteristic time dependence of
the discharge current, the discharge active voltage, and
the active power inputted into the discharge, at the
charging voltage V0 = 12 kV. The solid line corresponds
to the case when the high-voltage electrode end is
located at the magnetic field inversion point, the dashed
line – to the case without the external magnetic field.
One can see that the presence of the external magnetic
field leads to discharge current level decrease. This is
due to the primary plasma concentration in the axial
region and a decrease its current-carrying ability. The
studies of the high-voltage electrode diameter effect on
the discharge dynamics are indirect confirmation of this
[7]. Against the background of discharge current
decrease, the level of active power inputted into the
discharge increases, which is directly related to the
4 3 2 1
-5 -3 -1-6 -4 0 1
0.5
1.0
-2
B, kG
z, cm
Bmin
Binv
Bmax
200 ISSN 1562-6016. ВАНТ. 2018. №6(118)
discharge active voltage increase. In the given case, in
the presence of external magnetic field, the level of
power inputted into the discharge at the current
maximum, increases from 30 to 55 MW, while the
current decreases slightly from 34 to 30 kA. The active
voltage magnitude at this moment is several times
greater than without the external magnetic field.
Fig. 3. Dynamics of discharge current, discharge active
voltage and active power inputted into the discharge at
the charging voltage V0 = 12 kV
Fig. 4 demonstrates the comparative time
dependence of the active power inputted into the
discharge in the 1st half-period, in the presence of an
external magnetic field aP and its absence
*
aP . These
time dependences correspond to the charging voltage
V0 = 12 kV. The solid line corresponds to the case when
the high-voltage electrode end is located at the magnetic
field inversion point, the dashed line – at the magnetic
5.5µ 6.0µ 6.5µ 7.0µ
0
1
2
3
4
5
6
7
8
P
a
/P
* a
,
re
l.
u
n
.
t, s
inversion point
magn. field minimum
magn. field 0.64 kG
Fig. 4. Comparative time dependence of the active
power inputted into the discharge in the 1st half-period
in case of presence aP and absence
*
aP of the external
magnetic field
field minimum, the dotted line – at the point with the
magnetic field induction of about 0.64 kG. The
comparative dependence is presented only for the 1st
half-period, since the most of energy is released in this
half-period and accordingly, the highest power levels
are generated. The figure shows that in the presence of
the external magnetic field, the level of active power
inputted into the discharge increases. In this case, the
largest power increase is observed for the case when the
high-voltage electrode end is located at the magnetic
field inversion point. On average, for the 1st half-period,
the power level increases by 2 times.
Fig. 5 shows the ratio of the energies released in the
discharge in the 1st half-period, with external magnetic
field aW and without it *
aW depending on the initial
stored energy. One can see that the energy share,
released in the discharge in the 1st half period, in the
presence of the external magnetic field, exceeds the case
without the magnetic field. At the initial stored energy
up to 80 J, the largest increase of the energy, released in
the discharge, is observed for the case when the high-
voltage electrode end is located at the magnetic field
minimum, over 80 J – at the magnetic field inversion
point.
0 20 40 60 80 100 120 140
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
W
1
a
/W
* 1
a
,
re
l.
u
n
.
W
0
, J
inversion point
magn. field mimimum
magn. field 0.64 kG
magn. field maximum
Fig. 5. Ratio of the energy released in the 1st half-period
in case of presence Wa and absence Wa
*of the external
magnetic field from the initial stored energy
It should be noted a distinctive feature of the
discharge in the presence of the external magnetic field.
When the high-voltage electrode end is located at the
magnetic field minimum, the primary plasma, when
filling the discharge gap, overcomes the magnetic
barrier with the magnetic field induction minB . In case
when the electrode end is located at the magnetic field
inversion point, the plasma, having overcome the first
magnetic barrier, is forced into the region of reduced
magnetic field and concentrated near the inversion
point. In the third and fourth case, when the electrode
end is located beyond the inversion point, the plasma
must pass two magnetic barriers, the first – with
magnetic field induction minB and the second – with
induction of ~ 0.64 kG for the third case, and induction
Bmax for the case of the maximum magnetic field. In the
last case, a higher density of the primary plasma is
required. In case when the electrode end was located at
the magnetic field maximum, the minimum discharge
5.0µ 6.0µ 7.0µ 8.0µ 9.0µ 10.0µ
-20
-10
0
10
20
30 inversion point
without ext. magn. field
I d
,
k
A
t, s
5.0µ 6.0µ 7.0µ 8.0µ 9.0µ 10.0µ
0
2
4
10
12 inversion point
without ext. magn. field
U
a
,
k
V
t, s
5.0µ 6.0µ 7.0µ 8.0µ 9.0µ 10.0µ
0
20
40
60 inversion point
without ext. magn. field
P
a
,
M
W
t, s
ISSN 1562-6016. ВАНТ. 2018. №6(118) 201
ignition voltage was 2 kV, and a stable discharge
excitation was observed at the ignition voltage of
3…4 kV. Also it should be noted that in other cases, the
application of the external magnetic field contributed to
decrease of the minimum ignition voltage, which
implies the creation of the primary plasma with reduced
density.
CONCLUSIONS
Thus, it has been shown that the presence of the
external magnetic field, which was created by the
magnetic system on permanent ring magnets, effects on
the dynamic of the self-sustained plasma-beam
discharge and allows to increase the level of active
power inputted into the discharge. In spite of the fact
that the external magnetic field was two orders of
magnitude less than the intrinsic magnetic field of the
discharge, this made it possible to form such a topology
of the primary plasma, which subsequently set a certain
scenario for the development of a high-current
discharge with a given place of double layer formation
and parameters. It has been noted that the presence of
the external magnetic field, with configuration that
given in this paper, makes it possible to reduce the
primary plasma density, but at the magnetic field
maximum a higher density is required to excite a high-
current discharge.
The greatest increase of the active power inputted
into the discharge has been observed in the case when
the high-voltage electrode end is located in the magnetic
field inversion point, which is a distinctive feature of the
ring magnet. Due to diamagnetism, the primary plasma
was displaced into a region with a low magnetic field
and concentrated near the magnetic field inversion
point. It has been shown that the power increase is
observed against the background of the discharge
current decrease and the discharge active voltage
increase.
REFERENCES
1. Ie.V. Borgun et al. The formation of a power multi-
pulse extreme ultraviolet radiation in the pulse plasma
diode of low pressure // Acta Polytechnica. 2013, v. 53,
№ 2, p. 117-122.
2. A.Ya. Leyvi et al. Modification of the constructional
materials with the intensive charged particle beams and
plasma flows // Bulletin of the South Ural State
University. Ser. “Mechanical Engineering Industry”.
2016, v. 16, № 1, p. 28-55.
3. Y. Hrechko et al. The efficiency of the pulsed power
input in the limited plasma diode // 2017 IEEE 21st
International Conference on Pulsed Power (PPC),
Brighton. 2017, p. 1-4
4. E.I. Lutsenko et al. Dynamic double layers in high-
current plasma diodes // Journal of Technical Physics.
1988, v. 58, № 7, p. 1299-1309.
5. B.B. Kadomtsev. Collective phenomena in plasma.
Moscow: “Nauka”, 1976.
6. Ya.O. Hrechko et al. Features of active power
definition in high-current pulsed discharge // Problems
of Atomic Science and Technology. Series “Plasma
Physics”(22). 2016, № 6 (106), p. 48-51.
7. Ya.O. Hrechko et al. Electrodes dimensions effect on
the self-sustained plasma-beam discharge power //
Problems of Atomic Science and Technology. Series
“Plasma Electronics and New Methods of
Acceleration” (10). 2018, № 4 (116), p. 156-159.
Article received 22.09.2018
ВЛИЯНИЕ ВНЕШНЕГО МАГНИТНОГО ПОЛЯ НА ДИНАМИКУ И МОЩНОСТЬ
САМОСТОЯТЕЛЬНОГО ПЛАЗМЕННО-ПУЧКОВОГО РАЗРЯДА
Я.О. Гречко, Н.А. Азаренков, Е.В. Бабенко, Д.Л. Рябчиков, И.Н. Середа, Д.А. Болото, A.Ф. Целуйко
Работа связана с исследованием влияния внешнего постоянного магнитного поля на динамику и
мощность самостоятельного плазменно-пучкового разряда. Показано, что относительно небольшое (до
1 кГс) магнитное поле специфической конфигурации позволяет в несколько раз увеличить вводимую в
разряд мощность. Отмечены отличительные особенности протекания разряда при наличии внешнего
постоянного магнитного поля.
ВПЛИВ ЗОВНІШНЬОГО МАГНІТНОГО ПОЛЯ НА ДИНАМIКУ ТА ПОТУЖНІСТЬ
САМОСТІЙНОГО ПЛАЗМОВО-ПУЧКОВОГО РОЗРЯДУ
Я.О. Гречко, М.О. Азарєнков, Є.В. Бабенко, Д.Л. Рябчіков, І.М. Середа, Д.О. Болото, О.Ф. Целуйко
Робота пов’язана з дослідженням впливу зовнішнього постійного магнітного поля на динаміку і
потужність самостійного плазмово-пучкового розряду. Показано, що відносно невелике (до 1 кГс) магнітне
поле специфічної конфігурації дозволяє в декілька разів збільшити потужність, що вводиться в розряд.
Відзначено відмінні особливості протікання розряду при наявності зовнішнього постійного магнітного поля.
|