Simulation of nanoparticle deposition from plasmas on solid surface

In this paper a computer simulation of depositing nanoparticles from rarefied plasma on a solid substrate, which is at a floating potential, is carried out. In our model, we used the equation of cold hydrodynamics for ions, the equilibrium distribution of Boltzmann for electrons, and the particle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2018
Hauptverfasser: Bondar, M.A., Kravchenko, O.Yu.
Format: Artikel
Sprache:English
Veröffentlicht: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Schriftenreihe:Вопросы атомной науки и техники
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149064
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Simulation of nanoparticle deposition from plasmas on solid surface / M.A. Bondar, O.Yu. Kravchenko // Вопросы атомной науки и техники. — 2018. — № 6. — С. 267-269. — Бібліогр.: 5 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:In this paper a computer simulation of depositing nanoparticles from rarefied plasma on a solid substrate, which is at a floating potential, is carried out. In our model, we used the equation of cold hydrodynamics for ions, the equilibrium distribution of Boltzmann for electrons, and the particle in cell method for modeling nanoparticles. Dust particles are charged by electron and ion currents, which are described in accordance with the orbit-limited motion approach. Calculations were performed for various radii of nanoparticles, their concentrations and directed velocities in the unperturbed plasma. The results of the simulation show that, at a sufficiently large size of nanoparticles in the area of the sheath, a dust cloud, whose position changes in time, is formed. This leads to the formation of a minimum of the potential of the electric field and to the change in the structure of the sheath. The modification of the sheath by nanoparticles results in reflection and oscillation of the particles, which causes not stationary flow of nanoparticles onto the substrate.