Peculiarities of the oxide plasma creation using carbonate compounds

The process of obtaining oxide plasma from carbonate compounds of calcium CaCO₃ and neodymium Nd₂(CO₃)₃ was studied. The experiment was carried out on a two-stage plasma source with a reflective discharge. The experiment was conducted with the following parameters: a discharge voltage of 50…150 V,...

Full description

Saved in:
Bibliographic Details
Published in:Вопросы атомной науки и техники
Date:2018
Main Authors: Shariy, S.V., Yuferov, V.B., Shvets, M.O., Korotkova, I.M., Shapoval, A.M., Tkachov, V.I.
Format: Article
Language:English
Published: Національний науковий центр «Харківський фізико-технічний інститут» НАН України 2018
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/149069
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Peculiarities of the oxide plasma creation using carbonate compounds / S.V. Shariy, V.B. Yuferov, M.O. Shvets, I.M. Korotkova, A.M. Shapoval, V.I. Tkachov // Вопросы атомной науки и техники. — 2018. — № 6. — С. 293-296. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149069
record_format dspace
spelling Shariy, S.V.
Yuferov, V.B.
Shvets, M.O.
Korotkova, I.M.
Shapoval, A.M.
Tkachov, V.I.
2019-02-19T15:06:21Z
2019-02-19T15:06:21Z
2018
Peculiarities of the oxide plasma creation using carbonate compounds / S.V. Shariy, V.B. Yuferov, M.O. Shvets, I.M. Korotkova, A.M. Shapoval, V.I. Tkachov // Вопросы атомной науки и техники. — 2018. — № 6. — С. 293-296. — Бібліогр.: 8 назв. — англ.
1562-6016
PACS: 52.50.−b
https://nasplib.isofts.kiev.ua/handle/123456789/149069
The process of obtaining oxide plasma from carbonate compounds of calcium CaCO₃ and neodymium Nd₂(CO₃)₃ was studied. The experiment was carried out on a two-stage plasma source with a reflective discharge. The experiment was conducted with the following parameters: a discharge voltage of 50…150 V, a current of 8…30 A, a magnetic field of 100…200 Oe, the pressure in the vacuum chamber is 3·10⁻³…3·10⁻⁴ Torr. The ratio of the ionization potentials φi and the dissociation energy ε of the oxide components in the plasma was taken into account when selecting materials and analyzing the experimental data. For various conditions of the plasma arc burning, an analysis was made for the composition of the plasma and the elemental composition of the deposited target surfaces based on the experimental data.
Досліджувався процес отримання оксидної плазми з карбонатних з'єднань кальцію CaCO₃ та неодиму Nd₂(CO₃)₃. Експеримент проводився на двоступінчатому джерелі з відбивним розрядом. Напруга розряду 50…150 В, струм 8…30 А, магнітне поле 100…200 Е, тиск у вакуумній камері 3·10⁻³…3·10⁻⁴Торр. При виборі матеріалів та аналізі експериментальних даних враховувалося співвідношення потенціалу іонізації φi та енергії дисоціації ε оксидних компонент y плазмі. На підставі експериментальних даних для різних умов горіння плазмової дуги зроблено аналіз складу плазми і елементного складу напилених поверхонь мішеней.
Исследовался процесс получения оксидной плазмы из карбонатных соединений кальция CaCO₃ и неодима Nd₂(CO₃)₃. Эксперимент проводился на двухступенчатом источнике с отражательным разрядом. Напряжение разряда 50…150 В, ток 8…30 А, магнитное поле 100…200 Э, давление в вакуумной камере 3·10⁻³…3·10⁻⁴Торр. При выборе материалов и анализе экспериментальных данных учитывалось соотношение потенциалов ионизации φi и энергии диссоциации ε оксидных компонент в плазме. На основании экспериментальных данных для различных условий горения плазменной дуги сделан анализ состава плазмы и элементного состава напыленных поверхностей мишеней.
en
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
Вопросы атомной науки и техники
Низкотемпературная плазма и плазменные технологии
Peculiarities of the oxide plasma creation using carbonate compounds
Особливості створення оксидної плазми з карбонатних з'єднань
Особенности создания оксидной плазмы из карбонатных соединений
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Peculiarities of the oxide plasma creation using carbonate compounds
spellingShingle Peculiarities of the oxide plasma creation using carbonate compounds
Shariy, S.V.
Yuferov, V.B.
Shvets, M.O.
Korotkova, I.M.
Shapoval, A.M.
Tkachov, V.I.
Низкотемпературная плазма и плазменные технологии
title_short Peculiarities of the oxide plasma creation using carbonate compounds
title_full Peculiarities of the oxide plasma creation using carbonate compounds
title_fullStr Peculiarities of the oxide plasma creation using carbonate compounds
title_full_unstemmed Peculiarities of the oxide plasma creation using carbonate compounds
title_sort peculiarities of the oxide plasma creation using carbonate compounds
author Shariy, S.V.
Yuferov, V.B.
Shvets, M.O.
Korotkova, I.M.
Shapoval, A.M.
Tkachov, V.I.
author_facet Shariy, S.V.
Yuferov, V.B.
Shvets, M.O.
Korotkova, I.M.
Shapoval, A.M.
Tkachov, V.I.
topic Низкотемпературная плазма и плазменные технологии
topic_facet Низкотемпературная плазма и плазменные технологии
publishDate 2018
language English
container_title Вопросы атомной науки и техники
publisher Національний науковий центр «Харківський фізико-технічний інститут» НАН України
format Article
title_alt Особливості створення оксидної плазми з карбонатних з'єднань
Особенности создания оксидной плазмы из карбонатных соединений
description The process of obtaining oxide plasma from carbonate compounds of calcium CaCO₃ and neodymium Nd₂(CO₃)₃ was studied. The experiment was carried out on a two-stage plasma source with a reflective discharge. The experiment was conducted with the following parameters: a discharge voltage of 50…150 V, a current of 8…30 A, a magnetic field of 100…200 Oe, the pressure in the vacuum chamber is 3·10⁻³…3·10⁻⁴ Torr. The ratio of the ionization potentials φi and the dissociation energy ε of the oxide components in the plasma was taken into account when selecting materials and analyzing the experimental data. For various conditions of the plasma arc burning, an analysis was made for the composition of the plasma and the elemental composition of the deposited target surfaces based on the experimental data. Досліджувався процес отримання оксидної плазми з карбонатних з'єднань кальцію CaCO₃ та неодиму Nd₂(CO₃)₃. Експеримент проводився на двоступінчатому джерелі з відбивним розрядом. Напруга розряду 50…150 В, струм 8…30 А, магнітне поле 100…200 Е, тиск у вакуумній камері 3·10⁻³…3·10⁻⁴Торр. При виборі матеріалів та аналізі експериментальних даних враховувалося співвідношення потенціалу іонізації φi та енергії дисоціації ε оксидних компонент y плазмі. На підставі експериментальних даних для різних умов горіння плазмової дуги зроблено аналіз складу плазми і елементного складу напилених поверхонь мішеней. Исследовался процесс получения оксидной плазмы из карбонатных соединений кальция CaCO₃ и неодима Nd₂(CO₃)₃. Эксперимент проводился на двухступенчатом источнике с отражательным разрядом. Напряжение разряда 50…150 В, ток 8…30 А, магнитное поле 100…200 Э, давление в вакуумной камере 3·10⁻³…3·10⁻⁴Торр. При выборе материалов и анализе экспериментальных данных учитывалось соотношение потенциалов ионизации φi и энергии диссоциации ε оксидных компонент в плазме. На основании экспериментальных данных для различных условий горения плазменной дуги сделан анализ состава плазмы и элементного состава напыленных поверхностей мишеней.
issn 1562-6016
url https://nasplib.isofts.kiev.ua/handle/123456789/149069
citation_txt Peculiarities of the oxide plasma creation using carbonate compounds / S.V. Shariy, V.B. Yuferov, M.O. Shvets, I.M. Korotkova, A.M. Shapoval, V.I. Tkachov // Вопросы атомной науки и техники. — 2018. — № 6. — С. 293-296. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT shariysv peculiaritiesoftheoxideplasmacreationusingcarbonatecompounds
AT yuferovvb peculiaritiesoftheoxideplasmacreationusingcarbonatecompounds
AT shvetsmo peculiaritiesoftheoxideplasmacreationusingcarbonatecompounds
AT korotkovaim peculiaritiesoftheoxideplasmacreationusingcarbonatecompounds
AT shapovalam peculiaritiesoftheoxideplasmacreationusingcarbonatecompounds
AT tkachovvi peculiaritiesoftheoxideplasmacreationusingcarbonatecompounds
AT shariysv osoblivostístvorennâoksidnoíplazmizkarbonatnihzêdnanʹ
AT yuferovvb osoblivostístvorennâoksidnoíplazmizkarbonatnihzêdnanʹ
AT shvetsmo osoblivostístvorennâoksidnoíplazmizkarbonatnihzêdnanʹ
AT korotkovaim osoblivostístvorennâoksidnoíplazmizkarbonatnihzêdnanʹ
AT shapovalam osoblivostístvorennâoksidnoíplazmizkarbonatnihzêdnanʹ
AT tkachovvi osoblivostístvorennâoksidnoíplazmizkarbonatnihzêdnanʹ
AT shariysv osobennostisozdaniâoksidnoiplazmyizkarbonatnyhsoedinenii
AT yuferovvb osobennostisozdaniâoksidnoiplazmyizkarbonatnyhsoedinenii
AT shvetsmo osobennostisozdaniâoksidnoiplazmyizkarbonatnyhsoedinenii
AT korotkovaim osobennostisozdaniâoksidnoiplazmyizkarbonatnyhsoedinenii
AT shapovalam osobennostisozdaniâoksidnoiplazmyizkarbonatnyhsoedinenii
AT tkachovvi osobennostisozdaniâoksidnoiplazmyizkarbonatnyhsoedinenii
first_indexed 2025-11-25T22:45:07Z
last_indexed 2025-11-25T22:45:07Z
_version_ 1850570556760391680
fulltext ISSN 1562-6016. ВАНТ. 2018. №6(118) PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 293-296. 293 PECULIARITIES OF THE OXIDE PLASMA CREATION USING CARBONATE COMPOUNDS S.V. Shariy, V.B. Yuferov, M.O. Shvets, I.M. Korotkova, A.M. Shapoval, V.I. Tkachov National Science Center "Kharkov Institute of Physics and Technology", Kharkiv, Ukraine E-mail: v.yuferov@kipt.kharkov.ua The process of obtaining oxide plasma from carbonate compounds of calcium CaCO3 and neodymium Nd2(CO3)3 was studied. The experiment was carried out on a two-stage plasma source with a reflective discharge. The experiment was conducted with the following parameters: a discharge voltage of 50…150 V, a current of 8…30 A, a magnetic field of 100…200 Oe, the pressure in the vacuum chamber is 3·10-3…3·10-4 Torr. The ratio of the ionization potentials φi and the dissociation energy ε of the oxide components in the plasma was taken into ac- count when selecting materials and analyzing the experimental data. For various conditions of the plasma arc burn- ing, an analysis was made for the composition of the plasma and the elemental composition of the deposited target surfaces based on the experimental data. PACS: 52.50.−b INTRODUCTION In the articles [1, 2] plasma methods were proposed for reprocessing spent nuclear fuel (SNF). SNF is pre- dominantly an oxide compound of nuclear fuel and de- cay products. Therefore, the study of the creation fea- tures and oxide plasma parameters is of great interest. For the study, calcium oxide (as a representative of al- kaline-earth metal oxide) and neodymium oxide (as a representative of oxides of the lanthanide group) were chosen. The creation of an oxide plasma is possible with the direct ionization of the oxides [3] or by affecting the compounds so that the compounds decay and form the oxides. In this paper, the process of obtaining oxide plasma by the action of a vacuum arc on carbonates CaCO3 and neodymium Nd2(CO3)3 was studied. The ionization of the oxide occurs in the gas phase. The use of carbonates can significantly reduce the energy input into the discharge since the decomposition temperatures of carbonates are significantly lower than the melting points of the oxides. PREPARATION AND CARRYING OUT EXPERIMENT The creation of oxide plasma from carbonates is a difficult problem. It requires an individual approach in each case. The polyatomic nature of carbonate molecules, decomposition temperatures, dissociation energy and ionization energy of both carbonates and their constituent elements must all be taken into account. Carbonate compounds are mainly represented as crystalline hydrates and are hygroscopic. Neodymium carbonate forms crystalline hydrates: Nd2(CO3)3·nH2O, where n = 2.5 and 8. Already at temperatures around 50 0C there is an intensive release of water, which greatly complicates the maintenance of vacuum conditions. Therefore, before the experiment, the carbonate powder must be preheated and dehydrated. The heating should be carried out at temperatures not exceeding the decomposition temperature of the carbonate. If the decomposition temperature is exceeded, an undesirable decomposition of carbonates into oxides will occur [4, 5]. The experiment was carried out on a model of a two- stage source with a reflective discharge [2]. A schematic view of the source is shown in Fig. 1. Fig. 1. Two-stage source with a reflective discharge The choice of materials took into account the ratio of the ionization potentials φi and the dissociation energy ε of the investigated oxides. The ratio of ε/φi influences on the redistribution of concentrations between ionic components and the mapping of the corresponding lines in the plasma emission spectrum. When ε/φi <1 (CaO) ‒ with increasing discharge current the dissociation of the oxides occurs, followed by ionization and appearance of lines in the spectrum corresponding to atomic ions. When ε/φi>1 (Nd2O3) - ionization of oxides without dissociation occurs together with the appearance of lines in the spectrum corresponding to molecular ions. For uranium oxide, the situation is similar to neodymium oxide. We can consider two stages of creating oxide plasma from carbonates. The first is the thermal decomposition and evaporation of carbonate dissociation products, the mailto:v.yuferov@kipt.kharkov.ua 294 ISSN 1562-6016. ВАНТ. 2018. №6(118) second is the ionization of vapors and decay products entering the discharge region. In Fig. 2 the thermal decomposition stage of Ca and Nd carbonates is presented [3]. Fig. 2. Thermal decomposition of Ca- and Nd- carbonates The decomposition of CaCO3 takes place in one stage at a temperature of Tdiss=900…1000 0С with the formation of calcium and carbon dioxide. The decom- position of Nd2(CO3)3 occurs in two stages. At a tem- perature of Tdiss=200…510 0C, neodymium carbonate decomposes into neodymium oxycarbonate and carbon dioxide. At a temperature of Tdiss.=510…850 0C, the oxycarbonate decomposes into neodymium oxide and carbon dioxide. As a result of decomposition, oxides and carbon dioxide enter the discharge region. In this case, the introduction of oxides into the discharge pass- es without melting. The melting point for calcium oxide is Tmel.=2570 0C, and for neodymium oxide Tmel.=1900…2320 0C. DISCHARGE WITH CALCIUM CARBONATE In Fig. 3 the emission spectra of the plasma of Ca- CO3 are shown at discharge currents of 5 A and 10 A. The measurements were performed by the SL40-2- 3648USB spectrometer. The decoding of the spectra was made on the basis of [6, 7]. At discharge currents of 5 A on the spectrum (as a result of the shortage of ener- gy introduced into the discharge), the lines of excited singly charged CaII ions are not observed. The spectrum is represented by lines connected with water, hydrogen and other impurities. At discharge currents of 10 A, two lines of singly charged CaII ions (393, 367, 396, 847 nm) and singly-charged CII ions (657.8 nm) appear in the spectrum. Fig. 3. Plasma spectra at discharged with CaCO3: 1 ‒ The upper spectrum. Discharge current I = 5 A, voltage U = 90 V, pressure P = 3·10-4 Torr. 2 ‒ Lower spectrum. Current I = 10 A, voltage U = 90 V, pressure P = 3·10-3 Torr In Fig. 4 the spectrum of CaCO3 plasma at the discharge current of 18 A is shown. The increase in power introduced into the discharge led to an increase in the degree of ionization, a significant decrease in the peaks of water and impurities. The spectrum contains peaks of singly charged CaII ions (393.367, 396.847 nm) and line of Ca (422.673 nm). The line of C (657.8 nm) is insignificantly traced. If sulfur is present in the carbonate [8], CaII lines are not observed when the discharge current is increased. ISSN 1562-6016. ВАНТ. 2018. №6(118) 295 Fig. 4. Plasma spectra at discharged with CaCO3. Discharge current I = 18 A, voltage U = 150 V, pressure P = 7·10-3 Torr Figs. 3 and 4 show that an increase of the discharge power leads to an increase in the intensity of the lines of calcium ions with a decrease in the intensity of the lines of the molecular spectrum and carbon lines. This is due to the fact that for calcium oxide ε/φi<1. Before the io- nization of calcium, energy is additionally expended on dissociation processes, and the number of molecular components in the plasma decreases. DISCHARGE WITH NEODYMIUM CARBONATE In Fig. 5 the emission spectra of Nd2(CO3)3 plasma at discharge currents of 8 and 18 A are shown. As in the spectrum with calcium carbonate, lines with water, hyd- rogen, and impurities are observed at low discharge currents (8 A). The lines associated with neodymium are absent. When the discharge current increases to 18 A, the intensity of the spectrum increases and lines of singly charged carbon ions CII (5132.94 nm) and CII (5145.16 nm) appear. In the range of discharge currents of 8…30 A, lines connected with atomic neodymium ions are not observed. Since the ionization potential of neodymium oxide is lower than its dissociation poten- tial, neodymium is represented as ionized and excited oxide molecules. For the appearance of neodymium ion lines, a significant increase in the energy introduced into the discharge is necessary. This is due to the transfer of energy to rotational, vibrational levels and dissociative processes. Fig. 5. Plasma spectra at discharged with Nd2(CO3)3, discharge voltage U = 150 V, pressure P = 5·10-3 Torr, discharge current I: 1…18 A; 2…8 A 296 ISSN 1562-6016. ВАНТ. 2018. №6(118) The table shows the result of X-ray fluorescence analysis of the surface of five targets (see Fig. 1) after deposition in plasma. Material of the targets is titanium, target number 0 is test. The main quantity of neodymi- um compounds was fixed on the surface of target num- ber 5, which was located on the reflecting electrode-с. This is because the third electrode was under the poten- tial of the cathode. The motion of ions of neodymium oxide was determined by the electric field, since in this system the magnetic field of 200 Oe could not magnet- ize them. Elemental composition of the target surface Ele- ment Target №0,% Target №1,% Target №2,% Target №3,% Target №4,% Target №5,% Ti22 99.902 97.528 99.799 99.523 99.092 93.904 Fe26 0.0775 0.0793 0.0252 0.0726 0.0185 0.0483 Ni28 0.0200 0.0135 0.0070 0.0162 0.0078 0.0286 Cu29 – 0.5955 – 0.3123 0.1535 0.3729 Nb41 – 0.0045 – – – Mo42 – 0.0189 0.0040 0.0027 0.0100 0.0928 Nd60 – 1.702 – – 0.4447 4.192 Ta73 – – 0.1006 – – – W74 – 0.0509 0.0193 0.0629 0.2675 1.2990 CONCLUSIONS When preparing the creation of a discharge, it is nec- essary to take into account the temperatures of dehydra- tion and decomposition of carbonate compounds. The plasma composition depends on the ratio of the ioniza- tion potential and the decomposition energy. Elemental analysis of the targets surface, located in different plac- es of the discharge chamber indicates the presence of ionized neodymium oxide in the discharge. REFERENCES 1. V.B. Yuferov, V.V. Katrechko, V.I. Illichova, S.V. Shariy, A.S. Svichkar, M.O. Shvets, E.V. Mufel, A.G. Bobrov. Developing the concept of multi-stage spent fuel creating from fission products by physical methods // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2018, № 1(113), p. 118-126. 2. V.B. Yuferov, S.V. Shariy, M.O. Shvets, A.N. Ozerov. Gas-metal plasma source project for the separation technology // Problems of Atomic Science and Technology. Ser. “Plasma Physics”. 2014, № 5(93), p. 184-187. 3. R.H. Amirov, N.A. Vorona, A.V. Gavrikov, et ll. Experimental study of the diffused vacuum arc with cerium oxide cathode modeling uranium oxide for the method of SNF plasma separation // Journal of Physics Conference Series. 2016, v. 774(1), p. 012190. 4. V.A. Kochedycov, I.D. Zakiriyanova, I.V. Korzun. Termal decomposition of the real-earth oxides interac- tion products with the air components // Analytics and Control. 2005, v. 9, № 1. 5. G. Brauer. Guide to Inorganic Synthesis. М.: “Mir”. 1985, v. 4, p. 447. 6. A.N. Zaydel, V.K. Procofyev, S.M. Rayskiy. Tables of spectral lines. L.: Gos. izd-vo technico- teoretichescoy literatury, 1952, 560 p. (in Russian). 7. R.G.B. Pearse, A.G. Gaydon. The Identification of Molecular Spectra // Third ed., London, 1963. 8. S.V. Shariy, V.B. Yuferov, M.O. Shvets, V.I. Tkachov, V.О. Illichova, A.N. Shapoval. Spectro- scopic studies of CaCO3 plasma to simulate physico- chemical processes in SNF plasma // Problems of Atom- ic Science and Technology. Ser. “Plasma Physics”. 2018, № 2(114), p. 76-79. Article received 19.09.2018 ОСОБЕННОСТИ СОЗДАНИЯ ОКСИДНОЙ ПЛАЗМЫ ИЗ КАРБОНАТНЫХ СОЕДИНЕНИЙ С.В. Шарый, В.Б. Юферов, М.О. Швец, И.М. Короткова, А.Н. Шаповал, В.И. Ткачев Исследовался процесс получения оксидной плазмы из карбонатных соединений кальция CaCO3 и неодима Nd2(CO3)3. Эксперимент проводился на двухступенчатом источнике с отражательным разрядом. Напряжение разряда 50…150 В, ток 8…30 А, магнитное поле 100…200 Э, давление в вакуумной камере 3·10-3 …3·10-4 Торр. При выборе материалов и анализе экспериментальных данных учитывалось соотношение потенциалов ионизации φi и энергии диссоциации ε оксидных компонент в плазме. На основании экспериментальных данных для различных условий горения плазменной дуги сделан анализ состава плазмы и элементного состава напыленных поверхностей мишеней. ОСОБЛИВОСТІ СТВОРЕННЯ ОКСИДНОЇ ПЛАЗМИ З КАРБОНАТНИХ З'ЄДНАНЬ С.В. Шарий, В.Б. Юферов, М.О. Швець, І.М. Короткова, А.M. Шаповал, В.І. Ткачoв Досліджувався процес отримання оксидної плазми з карбонатних з'єднань кальцію CaCO3 та неодиму Nd2(CO3)3. Експеримент проводився на двоступінчатому джерелі з відбивним розрядом. Напруга розряду 50…150 В, струм 8…30 А, магнітне поле 100…200 Е, тиск у вакуумній камері 3·10-3…3·10-4 Торр. При ви- борі матеріалів та аналізі експериментальних даних враховувалося співвідношення потенціалу іонізації φi та енергії дисоціації ε оксидних компонент y плазмі. На підставі експериментальних даних для різних умов горіння плазмової дуги зроблено аналіз складу плазми і елементного складу напилених поверхонь мішеней.