Peculiarities of the oxide plasma creation using carbonate compounds
The process of obtaining oxide plasma from carbonate compounds of calcium CaCO₃ and neodymium Nd₂(CO₃)₃ was studied. The experiment was carried out on a two-stage plasma source with a reflective discharge. The experiment was conducted with the following parameters: a discharge voltage of 50…150 V,...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2018 |
| Main Authors: | , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2018
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/149069 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Peculiarities of the oxide plasma creation using carbonate compounds / S.V. Shariy, V.B. Yuferov, M.O. Shvets, I.M. Korotkova, A.M. Shapoval, V.I. Tkachov // Вопросы атомной науки и техники. — 2018. — № 6. — С. 293-296. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149069 |
|---|---|
| record_format |
dspace |
| spelling |
Shariy, S.V. Yuferov, V.B. Shvets, M.O. Korotkova, I.M. Shapoval, A.M. Tkachov, V.I. 2019-02-19T15:06:21Z 2019-02-19T15:06:21Z 2018 Peculiarities of the oxide plasma creation using carbonate compounds / S.V. Shariy, V.B. Yuferov, M.O. Shvets, I.M. Korotkova, A.M. Shapoval, V.I. Tkachov // Вопросы атомной науки и техники. — 2018. — № 6. — С. 293-296. — Бібліогр.: 8 назв. — англ. 1562-6016 PACS: 52.50.−b https://nasplib.isofts.kiev.ua/handle/123456789/149069 The process of obtaining oxide plasma from carbonate compounds of calcium CaCO₃ and neodymium Nd₂(CO₃)₃ was studied. The experiment was carried out on a two-stage plasma source with a reflective discharge. The experiment was conducted with the following parameters: a discharge voltage of 50…150 V, a current of 8…30 A, a magnetic field of 100…200 Oe, the pressure in the vacuum chamber is 3·10⁻³…3·10⁻⁴ Torr. The ratio of the ionization potentials φi and the dissociation energy ε of the oxide components in the plasma was taken into account when selecting materials and analyzing the experimental data. For various conditions of the plasma arc burning, an analysis was made for the composition of the plasma and the elemental composition of the deposited target surfaces based on the experimental data. Досліджувався процес отримання оксидної плазми з карбонатних з'єднань кальцію CaCO₃ та неодиму Nd₂(CO₃)₃. Експеримент проводився на двоступінчатому джерелі з відбивним розрядом. Напруга розряду 50…150 В, струм 8…30 А, магнітне поле 100…200 Е, тиск у вакуумній камері 3·10⁻³…3·10⁻⁴Торр. При виборі матеріалів та аналізі експериментальних даних враховувалося співвідношення потенціалу іонізації φi та енергії дисоціації ε оксидних компонент y плазмі. На підставі експериментальних даних для різних умов горіння плазмової дуги зроблено аналіз складу плазми і елементного складу напилених поверхонь мішеней. Исследовался процесс получения оксидной плазмы из карбонатных соединений кальция CaCO₃ и неодима Nd₂(CO₃)₃. Эксперимент проводился на двухступенчатом источнике с отражательным разрядом. Напряжение разряда 50…150 В, ток 8…30 А, магнитное поле 100…200 Э, давление в вакуумной камере 3·10⁻³…3·10⁻⁴Торр. При выборе материалов и анализе экспериментальных данных учитывалось соотношение потенциалов ионизации φi и энергии диссоциации ε оксидных компонент в плазме. На основании экспериментальных данных для различных условий горения плазменной дуги сделан анализ состава плазмы и элементного состава напыленных поверхностей мишеней. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Низкотемпературная плазма и плазменные технологии Peculiarities of the oxide plasma creation using carbonate compounds Особливості створення оксидної плазми з карбонатних з'єднань Особенности создания оксидной плазмы из карбонатных соединений Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Peculiarities of the oxide plasma creation using carbonate compounds |
| spellingShingle |
Peculiarities of the oxide plasma creation using carbonate compounds Shariy, S.V. Yuferov, V.B. Shvets, M.O. Korotkova, I.M. Shapoval, A.M. Tkachov, V.I. Низкотемпературная плазма и плазменные технологии |
| title_short |
Peculiarities of the oxide plasma creation using carbonate compounds |
| title_full |
Peculiarities of the oxide plasma creation using carbonate compounds |
| title_fullStr |
Peculiarities of the oxide plasma creation using carbonate compounds |
| title_full_unstemmed |
Peculiarities of the oxide plasma creation using carbonate compounds |
| title_sort |
peculiarities of the oxide plasma creation using carbonate compounds |
| author |
Shariy, S.V. Yuferov, V.B. Shvets, M.O. Korotkova, I.M. Shapoval, A.M. Tkachov, V.I. |
| author_facet |
Shariy, S.V. Yuferov, V.B. Shvets, M.O. Korotkova, I.M. Shapoval, A.M. Tkachov, V.I. |
| topic |
Низкотемпературная плазма и плазменные технологии |
| topic_facet |
Низкотемпературная плазма и плазменные технологии |
| publishDate |
2018 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Особливості створення оксидної плазми з карбонатних з'єднань Особенности создания оксидной плазмы из карбонатных соединений |
| description |
The process of obtaining oxide plasma from carbonate compounds of calcium CaCO₃ and neodymium
Nd₂(CO₃)₃ was studied. The experiment was carried out on a two-stage plasma source with a reflective discharge.
The experiment was conducted with the following parameters: a discharge voltage of 50…150 V, a current of
8…30 A, a magnetic field of 100…200 Oe, the pressure in the vacuum chamber is 3·10⁻³…3·10⁻⁴ Torr. The ratio of
the ionization potentials φi and the dissociation energy ε of the oxide components in the plasma was taken into account when selecting materials and analyzing the experimental data. For various conditions of the plasma arc burning, an analysis was made for the composition of the plasma and the elemental composition of the deposited target
surfaces based on the experimental data.
Досліджувався процес отримання оксидної плазми з карбонатних з'єднань кальцію CaCO₃ та неодиму
Nd₂(CO₃)₃. Експеримент проводився на двоступінчатому джерелі з відбивним розрядом. Напруга розряду
50…150 В, струм 8…30 А, магнітне поле 100…200 Е, тиск у вакуумній камері 3·10⁻³…3·10⁻⁴Торр. При виборі матеріалів та аналізі експериментальних даних враховувалося співвідношення потенціалу іонізації φi та
енергії дисоціації ε оксидних компонент y плазмі. На підставі експериментальних даних для різних умов
горіння плазмової дуги зроблено аналіз складу плазми і елементного складу напилених поверхонь мішеней.
Исследовался процесс получения оксидной плазмы из карбонатных соединений кальция CaCO₃ и
неодима Nd₂(CO₃)₃. Эксперимент проводился на двухступенчатом источнике с отражательным разрядом.
Напряжение разряда 50…150 В, ток 8…30 А, магнитное поле 100…200 Э, давление в вакуумной
камере 3·10⁻³…3·10⁻⁴Торр. При выборе материалов и анализе экспериментальных данных учитывалось
соотношение потенциалов ионизации φi и энергии диссоциации ε оксидных компонент в плазме. На
основании экспериментальных данных для различных условий горения плазменной дуги сделан анализ
состава плазмы и элементного состава напыленных поверхностей мишеней.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149069 |
| citation_txt |
Peculiarities of the oxide plasma creation using carbonate compounds / S.V. Shariy, V.B. Yuferov, M.O. Shvets, I.M. Korotkova, A.M. Shapoval, V.I. Tkachov // Вопросы атомной науки и техники. — 2018. — № 6. — С. 293-296. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT shariysv peculiaritiesoftheoxideplasmacreationusingcarbonatecompounds AT yuferovvb peculiaritiesoftheoxideplasmacreationusingcarbonatecompounds AT shvetsmo peculiaritiesoftheoxideplasmacreationusingcarbonatecompounds AT korotkovaim peculiaritiesoftheoxideplasmacreationusingcarbonatecompounds AT shapovalam peculiaritiesoftheoxideplasmacreationusingcarbonatecompounds AT tkachovvi peculiaritiesoftheoxideplasmacreationusingcarbonatecompounds AT shariysv osoblivostístvorennâoksidnoíplazmizkarbonatnihzêdnanʹ AT yuferovvb osoblivostístvorennâoksidnoíplazmizkarbonatnihzêdnanʹ AT shvetsmo osoblivostístvorennâoksidnoíplazmizkarbonatnihzêdnanʹ AT korotkovaim osoblivostístvorennâoksidnoíplazmizkarbonatnihzêdnanʹ AT shapovalam osoblivostístvorennâoksidnoíplazmizkarbonatnihzêdnanʹ AT tkachovvi osoblivostístvorennâoksidnoíplazmizkarbonatnihzêdnanʹ AT shariysv osobennostisozdaniâoksidnoiplazmyizkarbonatnyhsoedinenii AT yuferovvb osobennostisozdaniâoksidnoiplazmyizkarbonatnyhsoedinenii AT shvetsmo osobennostisozdaniâoksidnoiplazmyizkarbonatnyhsoedinenii AT korotkovaim osobennostisozdaniâoksidnoiplazmyizkarbonatnyhsoedinenii AT shapovalam osobennostisozdaniâoksidnoiplazmyizkarbonatnyhsoedinenii AT tkachovvi osobennostisozdaniâoksidnoiplazmyizkarbonatnyhsoedinenii |
| first_indexed |
2025-11-25T22:45:07Z |
| last_indexed |
2025-11-25T22:45:07Z |
| _version_ |
1850570556760391680 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2018. №6(118)
PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2018, № 6. Series: Plasma Physics (118), p. 293-296. 293
PECULIARITIES OF THE OXIDE PLASMA CREATION USING
CARBONATE COMPOUNDS
S.V. Shariy, V.B. Yuferov, M.O. Shvets, I.M. Korotkova, A.M. Shapoval, V.I. Tkachov
National Science Center "Kharkov Institute of Physics and Technology", Kharkiv, Ukraine
E-mail: v.yuferov@kipt.kharkov.ua
The process of obtaining oxide plasma from carbonate compounds of calcium CaCO3 and neodymium
Nd2(CO3)3 was studied. The experiment was carried out on a two-stage plasma source with a reflective discharge.
The experiment was conducted with the following parameters: a discharge voltage of 50…150 V, a current of
8…30 A, a magnetic field of 100…200 Oe, the pressure in the vacuum chamber is 3·10-3…3·10-4 Torr. The ratio of
the ionization potentials φi and the dissociation energy ε of the oxide components in the plasma was taken into ac-
count when selecting materials and analyzing the experimental data. For various conditions of the plasma arc burn-
ing, an analysis was made for the composition of the plasma and the elemental composition of the deposited target
surfaces based on the experimental data.
PACS: 52.50.−b
INTRODUCTION
In the articles [1, 2] plasma methods were proposed
for reprocessing spent nuclear fuel (SNF). SNF is pre-
dominantly an oxide compound of nuclear fuel and de-
cay products. Therefore, the study of the creation fea-
tures and oxide plasma parameters is of great interest.
For the study, calcium oxide (as a representative of al-
kaline-earth metal oxide) and neodymium oxide (as a
representative of oxides of the lanthanide group) were
chosen. The creation of an oxide plasma is possible with
the direct ionization of the oxides [3] or by affecting the
compounds so that the compounds decay and form the
oxides. In this paper, the process of obtaining oxide
plasma by the action of a vacuum arc on carbonates
CaCO3 and neodymium Nd2(CO3)3 was studied. The
ionization of the oxide occurs in the gas phase. The use
of carbonates can significantly reduce the energy input
into the discharge since the decomposition temperatures
of carbonates are significantly lower than the melting
points of the oxides.
PREPARATION AND CARRYING OUT
EXPERIMENT
The creation of oxide plasma from carbonates is a
difficult problem. It requires an individual approach in
each case. The polyatomic nature of carbonate
molecules, decomposition temperatures, dissociation
energy and ionization energy of both carbonates and
their constituent elements must all be taken into
account.
Carbonate compounds are mainly represented as
crystalline hydrates and are hygroscopic. Neodymium
carbonate forms crystalline hydrates: Nd2(CO3)3·nH2O,
where n = 2.5 and 8. Already at temperatures around
50 0C there is an intensive release of water, which
greatly complicates the maintenance of vacuum
conditions. Therefore, before the experiment, the
carbonate powder must be preheated and dehydrated.
The heating should be carried out at temperatures not
exceeding the decomposition temperature of the
carbonate. If the decomposition temperature is
exceeded, an undesirable decomposition of carbonates
into oxides will occur [4, 5].
The experiment was carried out on a model of a two-
stage source with a reflective discharge [2]. A schematic
view of the source is shown in Fig. 1.
Fig. 1. Two-stage source with a reflective discharge
The choice of materials took into account the ratio of
the ionization potentials φi and the dissociation energy ε
of the investigated oxides. The ratio of ε/φi influences
on the redistribution of concentrations between ionic
components and the mapping of the corresponding lines
in the plasma emission spectrum. When ε/φi <1 (CaO) ‒
with increasing discharge current the dissociation of the
oxides occurs, followed by ionization and appearance of
lines in the spectrum corresponding to atomic ions.
When ε/φi>1 (Nd2O3) - ionization of oxides without
dissociation occurs together with the appearance of lines
in the spectrum corresponding to molecular ions. For
uranium oxide, the situation is similar to neodymium
oxide.
We can consider two stages of creating oxide plasma
from carbonates. The first is the thermal decomposition
and evaporation of carbonate dissociation products, the
mailto:v.yuferov@kipt.kharkov.ua
294 ISSN 1562-6016. ВАНТ. 2018. №6(118)
second is the ionization of vapors and decay products
entering the discharge region. In Fig. 2 the thermal
decomposition stage of Ca and Nd carbonates is
presented [3].
Fig. 2. Thermal decomposition of Ca- and
Nd- carbonates
The decomposition of CaCO3 takes place in one
stage at a temperature of Tdiss=900…1000 0С with the
formation of calcium and carbon dioxide. The decom-
position of Nd2(CO3)3 occurs in two stages. At a tem-
perature of Tdiss=200…510 0C, neodymium carbonate
decomposes into neodymium oxycarbonate and carbon
dioxide. At a temperature of Tdiss.=510…850 0C, the
oxycarbonate decomposes into neodymium oxide and
carbon dioxide. As a result of decomposition, oxides
and carbon dioxide enter the discharge region. In this
case, the introduction of oxides into the discharge pass-
es without melting. The melting point for calcium oxide
is Tmel.=2570 0C, and for neodymium oxide
Tmel.=1900…2320 0C.
DISCHARGE WITH CALCIUM CARBONATE
In Fig. 3 the emission spectra of the plasma of Ca-
CO3 are shown at discharge currents of 5 A and 10 A.
The measurements were performed by the SL40-2-
3648USB spectrometer. The decoding of the spectra
was made on the basis of [6, 7]. At discharge currents of
5 A on the spectrum (as a result of the shortage of ener-
gy introduced into the discharge), the lines of excited
singly charged CaII ions are not observed. The spectrum
is represented by lines connected with water, hydrogen
and other impurities. At discharge currents of 10 A, two
lines of singly charged CaII ions (393, 367, 396,
847 nm) and singly-charged CII ions (657.8 nm) appear
in the spectrum.
Fig. 3. Plasma spectra at discharged with CaCO3: 1 ‒ The upper spectrum. Discharge current I = 5 A, voltage
U = 90 V, pressure P = 3·10-4 Torr. 2 ‒ Lower spectrum. Current I = 10 A, voltage U = 90 V,
pressure P = 3·10-3 Torr
In Fig. 4 the spectrum of CaCO3 plasma at the
discharge current of 18 A is shown. The increase in
power introduced into the discharge led to an increase in
the degree of ionization, a significant decrease in the
peaks of water and impurities. The spectrum contains
peaks of singly charged CaII ions (393.367,
396.847 nm) and line of Ca (422.673 nm). The line of C
(657.8 nm) is insignificantly traced. If sulfur is present
in the carbonate [8], CaII lines are not observed when
the discharge current is increased.
ISSN 1562-6016. ВАНТ. 2018. №6(118) 295
Fig. 4. Plasma spectra at discharged with CaCO3. Discharge current I = 18 A, voltage
U = 150 V, pressure P = 7·10-3 Torr
Figs. 3 and 4 show that an increase of the discharge
power leads to an increase in the intensity of the lines of
calcium ions with a decrease in the intensity of the lines
of the molecular spectrum and carbon lines. This is due
to the fact that for calcium oxide ε/φi<1. Before the io-
nization of calcium, energy is additionally expended on
dissociation processes, and the number of molecular
components in the plasma decreases.
DISCHARGE WITH NEODYMIUM
CARBONATE
In Fig. 5 the emission spectra of Nd2(CO3)3 plasma
at discharge currents of 8 and 18 A are shown. As in the
spectrum with calcium carbonate, lines with water, hyd-
rogen, and impurities are observed at low discharge
currents (8 A). The lines associated with neodymium
are absent. When the discharge current increases to
18 A, the intensity of the spectrum increases and lines
of singly charged carbon ions CII (5132.94 nm) and CII
(5145.16 nm) appear. In the range of discharge currents
of 8…30 A, lines connected with atomic neodymium
ions are not observed. Since the ionization potential of
neodymium oxide is lower than its dissociation poten-
tial, neodymium is represented as ionized and excited
oxide molecules. For the appearance of neodymium ion
lines, a significant increase in the energy introduced into
the discharge is necessary. This is due to the transfer of
energy to rotational, vibrational levels and dissociative
processes.
Fig. 5. Plasma spectra at discharged with Nd2(CO3)3, discharge voltage U = 150 V, pressure P = 5·10-3 Torr,
discharge current I: 1…18 A; 2…8 A
296 ISSN 1562-6016. ВАНТ. 2018. №6(118)
The table shows the result of X-ray fluorescence
analysis of the surface of five targets (see Fig. 1) after
deposition in plasma. Material of the targets is titanium,
target number 0 is test. The main quantity of neodymi-
um compounds was fixed on the surface of target num-
ber 5, which was located on the reflecting electrode-с.
This is because the third electrode was under the poten-
tial of the cathode. The motion of ions of neodymium
oxide was determined by the electric field, since in this
system the magnetic field of 200 Oe could not magnet-
ize them.
Elemental composition of the target surface
Ele-
ment
Target
№0,%
Target
№1,%
Target
№2,%
Target
№3,%
Target
№4,%
Target
№5,%
Ti22 99.902 97.528 99.799 99.523 99.092 93.904
Fe26 0.0775 0.0793 0.0252 0.0726 0.0185 0.0483
Ni28 0.0200 0.0135 0.0070 0.0162 0.0078 0.0286
Cu29 – 0.5955 – 0.3123 0.1535 0.3729
Nb41 – 0.0045 – – –
Mo42 – 0.0189 0.0040 0.0027 0.0100 0.0928
Nd60 – 1.702 – – 0.4447 4.192
Ta73 – – 0.1006 – – –
W74 – 0.0509 0.0193 0.0629 0.2675 1.2990
CONCLUSIONS
When preparing the creation of a discharge, it is nec-
essary to take into account the temperatures of dehydra-
tion and decomposition of carbonate compounds. The
plasma composition depends on the ratio of the ioniza-
tion potential and the decomposition energy. Elemental
analysis of the targets surface, located in different plac-
es of the discharge chamber indicates the presence of
ionized neodymium oxide in the discharge.
REFERENCES
1. V.B. Yuferov, V.V. Katrechko, V.I. Illichova,
S.V. Shariy, A.S. Svichkar, M.O. Shvets, E.V. Mufel,
A.G. Bobrov. Developing the concept of multi-stage
spent fuel creating from fission products by physical
methods // Problems of Atomic Science and Technology.
Ser. “Plasma Physics”. 2018, № 1(113), p. 118-126.
2. V.B. Yuferov, S.V. Shariy, M.O. Shvets,
A.N. Ozerov. Gas-metal plasma source project for the
separation technology // Problems of Atomic Science
and Technology. Ser. “Plasma Physics”. 2014,
№ 5(93), p. 184-187.
3. R.H. Amirov, N.A. Vorona, A.V. Gavrikov, et ll.
Experimental study of the diffused vacuum arc with
cerium oxide cathode modeling uranium oxide for the
method of SNF plasma separation // Journal of Physics
Conference Series. 2016, v. 774(1), p. 012190.
4. V.A. Kochedycov, I.D. Zakiriyanova, I.V. Korzun.
Termal decomposition of the real-earth oxides interac-
tion products with the air components // Analytics and
Control. 2005, v. 9, № 1.
5. G. Brauer. Guide to Inorganic Synthesis. М.: “Mir”.
1985, v. 4, p. 447.
6. A.N. Zaydel, V.K. Procofyev, S.M. Rayskiy. Tables
of spectral lines. L.: Gos. izd-vo technico-
teoretichescoy literatury, 1952, 560 p. (in Russian).
7. R.G.B. Pearse, A.G. Gaydon. The Identification of
Molecular Spectra // Third ed., London, 1963.
8. S.V. Shariy, V.B. Yuferov, M.O. Shvets,
V.I. Tkachov, V.О. Illichova, A.N. Shapoval. Spectro-
scopic studies of CaCO3 plasma to simulate physico-
chemical processes in SNF plasma // Problems of Atom-
ic Science and Technology. Ser. “Plasma Physics”.
2018, № 2(114), p. 76-79.
Article received 19.09.2018
ОСОБЕННОСТИ СОЗДАНИЯ ОКСИДНОЙ ПЛАЗМЫ ИЗ КАРБОНАТНЫХ СОЕДИНЕНИЙ
С.В. Шарый, В.Б. Юферов, М.О. Швец, И.М. Короткова, А.Н. Шаповал, В.И. Ткачев
Исследовался процесс получения оксидной плазмы из карбонатных соединений кальция CaCO3 и
неодима Nd2(CO3)3. Эксперимент проводился на двухступенчатом источнике с отражательным разрядом.
Напряжение разряда 50…150 В, ток 8…30 А, магнитное поле 100…200 Э, давление в вакуумной
камере 3·10-3 …3·10-4 Торр. При выборе материалов и анализе экспериментальных данных учитывалось
соотношение потенциалов ионизации φi и энергии диссоциации ε оксидных компонент в плазме. На
основании экспериментальных данных для различных условий горения плазменной дуги сделан анализ
состава плазмы и элементного состава напыленных поверхностей мишеней.
ОСОБЛИВОСТІ СТВОРЕННЯ ОКСИДНОЇ ПЛАЗМИ З КАРБОНАТНИХ З'ЄДНАНЬ
С.В. Шарий, В.Б. Юферов, М.О. Швець, І.М. Короткова, А.M. Шаповал, В.І. Ткачoв
Досліджувався процес отримання оксидної плазми з карбонатних з'єднань кальцію CaCO3 та неодиму
Nd2(CO3)3. Експеримент проводився на двоступінчатому джерелі з відбивним розрядом. Напруга розряду
50…150 В, струм 8…30 А, магнітне поле 100…200 Е, тиск у вакуумній камері 3·10-3…3·10-4 Торр. При ви-
борі матеріалів та аналізі експериментальних даних враховувалося співвідношення потенціалу іонізації φi та
енергії дисоціації ε оксидних компонент y плазмі. На підставі експериментальних даних для різних умов
горіння плазмової дуги зроблено аналіз складу плазми і елементного складу напилених поверхонь мішеней.
|