Natural Intrinsic Geometrical Symmetries

A proposal is made for what could well be the most natural symmetrical Riemannian spaces which are homogeneous but not isotropic, i.e. of what could well be the most natural class of symmetrical spaces beyond the spaces of constant Riemannian curvature, that is, beyond the spaces which are homogeneo...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2009
Main Authors: Haesen, S., Verstraelen, L.
Format: Article
Language:English
Published: Інститут математики НАН України 2009
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/149095
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Natural Intrinsic Geometrical Symmetries / S. Haesen, L. Verstraelen // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 71 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149095
record_format dspace
spelling Haesen, S.
Verstraelen, L.
2019-02-19T17:16:18Z
2019-02-19T17:16:18Z
2009
Natural Intrinsic Geometrical Symmetries / S. Haesen, L. Verstraelen // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 71 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 53A55; 53B20
https://nasplib.isofts.kiev.ua/handle/123456789/149095
A proposal is made for what could well be the most natural symmetrical Riemannian spaces which are homogeneous but not isotropic, i.e. of what could well be the most natural class of symmetrical spaces beyond the spaces of constant Riemannian curvature, that is, beyond the spaces which are homogeneous and isotropic, or, still, the spaces which satisfy the axiom of free mobility.
This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. The authors do thank the referees whose comments resulted in real improvements of the original version of this paper. The first author was partially supported by the Spanish MEC Grant MTM2007-60731 with FEDER funds and the Junta de Andaluc´ıa Regional Grant P06-FQM01951. Both authors were partially supported by the Research Foundation Flanders project G.0432.07.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Natural Intrinsic Geometrical Symmetries
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Natural Intrinsic Geometrical Symmetries
spellingShingle Natural Intrinsic Geometrical Symmetries
Haesen, S.
Verstraelen, L.
title_short Natural Intrinsic Geometrical Symmetries
title_full Natural Intrinsic Geometrical Symmetries
title_fullStr Natural Intrinsic Geometrical Symmetries
title_full_unstemmed Natural Intrinsic Geometrical Symmetries
title_sort natural intrinsic geometrical symmetries
author Haesen, S.
Verstraelen, L.
author_facet Haesen, S.
Verstraelen, L.
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A proposal is made for what could well be the most natural symmetrical Riemannian spaces which are homogeneous but not isotropic, i.e. of what could well be the most natural class of symmetrical spaces beyond the spaces of constant Riemannian curvature, that is, beyond the spaces which are homogeneous and isotropic, or, still, the spaces which satisfy the axiom of free mobility.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149095
citation_txt Natural Intrinsic Geometrical Symmetries / S. Haesen, L. Verstraelen // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 71 назв. — англ.
work_keys_str_mv AT haesens naturalintrinsicgeometricalsymmetries
AT verstraelenl naturalintrinsicgeometricalsymmetries
first_indexed 2025-12-07T17:59:37Z
last_indexed 2025-12-07T17:59:37Z
_version_ 1850873350551764992