On Projective Equivalence of Univariate Polynomial Subspaces
We pose and solve the equivalence problem for subspaces of Pn, the (n+1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of t...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2009 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2009
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/149100 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On Projective Equivalence of Univariate Polynomial Subspaces / P. Crooks, R. Milson // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149100 |
|---|---|
| record_format |
dspace |
| spelling |
Crooks, P. Milson, R. 2019-02-19T17:20:43Z 2019-02-19T17:20:43Z 2009 On Projective Equivalence of Univariate Polynomial Subspaces / P. Crooks, R. Milson // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 14M15; 15A72; 34A30; 58K05 https://nasplib.isofts.kiev.ua/handle/123456789/149100 We pose and solve the equivalence problem for subspaces of Pn, the (n+1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of the Wronski map and use this map to reduce the subspace equivalence problem to the equivalence problem for binary forms. Discussions with D. G´omez-Ullate and N. Kamran are gratefully acknowledged. P.C. was supported by an NSERC Undergraduate Summer Research Award. R.M. is supported by an NSERC discovery grant. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications On Projective Equivalence of Univariate Polynomial Subspaces Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On Projective Equivalence of Univariate Polynomial Subspaces |
| spellingShingle |
On Projective Equivalence of Univariate Polynomial Subspaces Crooks, P. Milson, R. |
| title_short |
On Projective Equivalence of Univariate Polynomial Subspaces |
| title_full |
On Projective Equivalence of Univariate Polynomial Subspaces |
| title_fullStr |
On Projective Equivalence of Univariate Polynomial Subspaces |
| title_full_unstemmed |
On Projective Equivalence of Univariate Polynomial Subspaces |
| title_sort |
on projective equivalence of univariate polynomial subspaces |
| author |
Crooks, P. Milson, R. |
| author_facet |
Crooks, P. Milson, R. |
| publishDate |
2009 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We pose and solve the equivalence problem for subspaces of Pn, the (n+1) dimensional vector space of univariate polynomials of degree ≤ n. The group of interest is SL2 acting by projective transformations on the Grassmannian variety GkPn of k-dimensional subspaces. We establish the equivariance of the Wronski map and use this map to reduce the subspace equivalence problem to the equivalence problem for binary forms.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149100 |
| citation_txt |
On Projective Equivalence of Univariate Polynomial Subspaces / P. Crooks, R. Milson // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 20 назв. — англ. |
| work_keys_str_mv |
AT crooksp onprojectiveequivalenceofunivariatepolynomialsubspaces AT milsonr onprojectiveequivalenceofunivariatepolynomialsubspaces |
| first_indexed |
2025-12-07T20:11:59Z |
| last_indexed |
2025-12-07T20:11:59Z |
| _version_ |
1850881678260568064 |