Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators
One-dimensional unitary scattering controlled by non-Hermitian (typically, PT-symmetric) quantum Hamiltonians H ≠ H† is considered. Treating these operators via Runge-Kutta approximation, our three-Hilbert-space formulation of quantum theory is reviewed as explaining the unitarity of scattering. Our...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2009 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2009
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/149110 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators / M. Znojil // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 33 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149110 |
|---|---|
| record_format |
dspace |
| spelling |
Znojil, M. 2019-02-19T17:27:09Z 2019-02-19T17:27:09Z 2009 Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators / M. Znojil // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 33 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 81U20; 46C15; 81Q10; 34L25; 47A40; 47B50 https://nasplib.isofts.kiev.ua/handle/123456789/149110 One-dimensional unitary scattering controlled by non-Hermitian (typically, PT-symmetric) quantum Hamiltonians H ≠ H† is considered. Treating these operators via Runge-Kutta approximation, our three-Hilbert-space formulation of quantum theory is reviewed as explaining the unitarity of scattering. Our recent paper on bound states [Znojil M., SIGMA 5 (2009), 001, 19 pages, arXiv:0901.0700] is complemented by the text on scattering. An elementary example illustrates the feasibility of the resulting innovative theoretical recipe. A new family of the so called quasilocal inner products in Hilbert space is found to exist. Constructively, these products are all described in terms of certain non-equivalent short-range metric operators Θ ≠ I represented, in Runge-Kutta approximation, by (2R–1)-diagonal matrices. This paper is a contribution to the Proceedings of the 5-th Microconference “Analytic and Algebraic Methods V”. The author appreciates the support by the Institutional Research Plan AV0Z10480505, by the MSMT “Doppler Institute” project Nr. LC06002 and by GA ˇ CR grant Nr. 202/07/1307. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators |
| spellingShingle |
Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators Znojil, M. |
| title_short |
Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators |
| title_full |
Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators |
| title_fullStr |
Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators |
| title_full_unstemmed |
Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators |
| title_sort |
cryptohermitian picture of scattering using quasilocal metric operators |
| author |
Znojil, M. |
| author_facet |
Znojil, M. |
| publishDate |
2009 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
One-dimensional unitary scattering controlled by non-Hermitian (typically, PT-symmetric) quantum Hamiltonians H ≠ H† is considered. Treating these operators via Runge-Kutta approximation, our three-Hilbert-space formulation of quantum theory is reviewed as explaining the unitarity of scattering. Our recent paper on bound states [Znojil M., SIGMA 5 (2009), 001, 19 pages, arXiv:0901.0700] is complemented by the text on scattering. An elementary example illustrates the feasibility of the resulting innovative theoretical recipe. A new family of the so called quasilocal inner products in Hilbert space is found to exist. Constructively, these products are all described in terms of certain non-equivalent short-range metric operators Θ ≠ I represented, in Runge-Kutta approximation, by (2R–1)-diagonal matrices.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149110 |
| citation_txt |
Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators / M. Znojil // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 33 назв. — англ. |
| work_keys_str_mv |
AT znojilm cryptohermitianpictureofscatteringusingquasilocalmetricoperators |
| first_indexed |
2025-11-29T13:27:01Z |
| last_indexed |
2025-11-29T13:27:01Z |
| _version_ |
1850854997588180992 |