Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators

One-dimensional unitary scattering controlled by non-Hermitian (typically, PT-symmetric) quantum Hamiltonians H ≠ H† is considered. Treating these operators via Runge-Kutta approximation, our three-Hilbert-space formulation of quantum theory is reviewed as explaining the unitarity of scattering. Our...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2009
Автор: Znojil, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149110
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators / M. Znojil // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 33 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149110
record_format dspace
spelling Znojil, M.
2019-02-19T17:27:09Z
2019-02-19T17:27:09Z
2009
Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators / M. Znojil // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 33 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 81U20; 46C15; 81Q10; 34L25; 47A40; 47B50
https://nasplib.isofts.kiev.ua/handle/123456789/149110
One-dimensional unitary scattering controlled by non-Hermitian (typically, PT-symmetric) quantum Hamiltonians H ≠ H† is considered. Treating these operators via Runge-Kutta approximation, our three-Hilbert-space formulation of quantum theory is reviewed as explaining the unitarity of scattering. Our recent paper on bound states [Znojil M., SIGMA 5 (2009), 001, 19 pages, arXiv:0901.0700] is complemented by the text on scattering. An elementary example illustrates the feasibility of the resulting innovative theoretical recipe. A new family of the so called quasilocal inner products in Hilbert space is found to exist. Constructively, these products are all described in terms of certain non-equivalent short-range metric operators Θ ≠ I represented, in Runge-Kutta approximation, by (2R–1)-diagonal matrices.
This paper is a contribution to the Proceedings of the 5-th Microconference “Analytic and Algebraic Methods V”. The author appreciates the support by the Institutional Research Plan AV0Z10480505, by the MSMT “Doppler Institute” project Nr. LC06002 and by GA ˇ CR grant Nr. 202/07/1307.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators
spellingShingle Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators
Znojil, M.
title_short Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators
title_full Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators
title_fullStr Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators
title_full_unstemmed Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators
title_sort cryptohermitian picture of scattering using quasilocal metric operators
author Znojil, M.
author_facet Znojil, M.
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description One-dimensional unitary scattering controlled by non-Hermitian (typically, PT-symmetric) quantum Hamiltonians H ≠ H† is considered. Treating these operators via Runge-Kutta approximation, our three-Hilbert-space formulation of quantum theory is reviewed as explaining the unitarity of scattering. Our recent paper on bound states [Znojil M., SIGMA 5 (2009), 001, 19 pages, arXiv:0901.0700] is complemented by the text on scattering. An elementary example illustrates the feasibility of the resulting innovative theoretical recipe. A new family of the so called quasilocal inner products in Hilbert space is found to exist. Constructively, these products are all described in terms of certain non-equivalent short-range metric operators Θ ≠ I represented, in Runge-Kutta approximation, by (2R–1)-diagonal matrices.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149110
citation_txt Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators / M. Znojil // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 33 назв. — англ.
work_keys_str_mv AT znojilm cryptohermitianpictureofscatteringusingquasilocalmetricoperators
first_indexed 2025-11-29T13:27:01Z
last_indexed 2025-11-29T13:27:01Z
_version_ 1850854997588180992