Contact Geometry of Curves

Cartan's method of moving frames is briefly recalled in the context of immersed curves in the homogeneous space of a Lie group G. The contact geometry of curves in low dimensional equi-affine geometry is then made explicit. This delivers the complete set of invariant data which solves the G-equ...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2009
Автор: Vassiliou, P.J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149111
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Contact Geometry of Curves / P.J. Vassiliou // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 30 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149111
record_format dspace
spelling Vassiliou, P.J.
2019-02-19T17:27:30Z
2019-02-19T17:27:30Z
2009
Contact Geometry of Curves / P.J. Vassiliou // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 30 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 53A35; 53A55; 58A15; 58A20; 58A30
https://nasplib.isofts.kiev.ua/handle/123456789/149111
Cartan's method of moving frames is briefly recalled in the context of immersed curves in the homogeneous space of a Lie group G. The contact geometry of curves in low dimensional equi-affine geometry is then made explicit. This delivers the complete set of invariant data which solves the G-equivalence problem via a straightforward procedure, and which is, in some sense a supplement to the equivariant method of Fels and Olver. Next, the contact geometry of curves in general Riemannian manifolds (M,g) is described. For the special case in which the isometries of (M,g) act transitively, it is shown that the contact geometry provides an explicit algorithmic construction of the differential invariants for curves in M. The inputs required for the construction consist only of the metric g and a parametrisation of structure group SO(n); the group action is not required and no integration is involved. To illustrate the algorithm we explicitly construct complete sets of differential invariants for curves in the Poincaré half-space H3 and in a family of constant curvature 3-metrics. It is conjectured that similar results are possible in other Cartan geometries.
This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. I am indebted to the anonymous referees for insightful comments and for corrections which greatly improved the paper. Any remaining errors are mine.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Contact Geometry of Curves
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Contact Geometry of Curves
spellingShingle Contact Geometry of Curves
Vassiliou, P.J.
title_short Contact Geometry of Curves
title_full Contact Geometry of Curves
title_fullStr Contact Geometry of Curves
title_full_unstemmed Contact Geometry of Curves
title_sort contact geometry of curves
author Vassiliou, P.J.
author_facet Vassiliou, P.J.
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Cartan's method of moving frames is briefly recalled in the context of immersed curves in the homogeneous space of a Lie group G. The contact geometry of curves in low dimensional equi-affine geometry is then made explicit. This delivers the complete set of invariant data which solves the G-equivalence problem via a straightforward procedure, and which is, in some sense a supplement to the equivariant method of Fels and Olver. Next, the contact geometry of curves in general Riemannian manifolds (M,g) is described. For the special case in which the isometries of (M,g) act transitively, it is shown that the contact geometry provides an explicit algorithmic construction of the differential invariants for curves in M. The inputs required for the construction consist only of the metric g and a parametrisation of structure group SO(n); the group action is not required and no integration is involved. To illustrate the algorithm we explicitly construct complete sets of differential invariants for curves in the Poincaré half-space H3 and in a family of constant curvature 3-metrics. It is conjectured that similar results are possible in other Cartan geometries.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149111
citation_txt Contact Geometry of Curves / P.J. Vassiliou // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 30 назв. — англ.
work_keys_str_mv AT vassilioupj contactgeometryofcurves
first_indexed 2025-12-07T20:21:45Z
last_indexed 2025-12-07T20:21:45Z
_version_ 1850882293288140800