Compact Riemannian Manifolds with Homogeneous Geodesics

A homogeneous Riemannian space (M = G/H,g) is called a geodesic orbit space (shortly, GO-space) if any geodesic is an orbit of one-parameter subgroup of the isometry group G. We study the structure of compact GO-spaces and give some sufficient conditions for existence and non-existence of an invaria...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2009
Автори: Alekseevsky, D.V., Nikonorov, Y.G.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149121
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Compact Riemannian Manifolds with Homogeneous Geodesics / D.V. Alekseevsky, Y.G. Nikonorov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149121
record_format dspace
spelling Alekseevsky, D.V.
Nikonorov, Y.G.
2019-02-19T17:31:47Z
2019-02-19T17:31:47Z
2009
Compact Riemannian Manifolds with Homogeneous Geodesics / D.V. Alekseevsky, Y.G. Nikonorov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 53C20; 53C25; 53C35
https://nasplib.isofts.kiev.ua/handle/123456789/149121
A homogeneous Riemannian space (M = G/H,g) is called a geodesic orbit space (shortly, GO-space) if any geodesic is an orbit of one-parameter subgroup of the isometry group G. We study the structure of compact GO-spaces and give some sufficient conditions for existence and non-existence of an invariant metric g with homogeneous geodesics on a homogeneous space of a compact Lie group G. We give a classification of compact simply connected GO-spaces (M = G/H,g) of positive Euler characteristic. If the group G is simple and the metric g does not come from a bi-invariant metric of G, then M is one of the flag manifolds M₁ = SO(2n+1)/U(n) or M₂ = Sp(n)/U(1)·Sp(n–1) and g is any invariant metric on M which depends on two real parameters. In both cases, there exists unique (up to a scaling) symmetric metric g₀ such that (M,g0) is the symmetric space M = SO(2n+2)/U(n+1) or, respectively, CP²n⁻¹. The manifolds M₁, M₂ are weakly symmetric spaces.
This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. The first author was partially supported by the Royal Society (Travel Grant 2007/R3). The second author was partially supported by the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (grant NSH-5682.2008.1). We are grateful to all referees, whose comments and suggestions permit us to improve the presentation of this article.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Compact Riemannian Manifolds with Homogeneous Geodesics
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Compact Riemannian Manifolds with Homogeneous Geodesics
spellingShingle Compact Riemannian Manifolds with Homogeneous Geodesics
Alekseevsky, D.V.
Nikonorov, Y.G.
title_short Compact Riemannian Manifolds with Homogeneous Geodesics
title_full Compact Riemannian Manifolds with Homogeneous Geodesics
title_fullStr Compact Riemannian Manifolds with Homogeneous Geodesics
title_full_unstemmed Compact Riemannian Manifolds with Homogeneous Geodesics
title_sort compact riemannian manifolds with homogeneous geodesics
author Alekseevsky, D.V.
Nikonorov, Y.G.
author_facet Alekseevsky, D.V.
Nikonorov, Y.G.
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A homogeneous Riemannian space (M = G/H,g) is called a geodesic orbit space (shortly, GO-space) if any geodesic is an orbit of one-parameter subgroup of the isometry group G. We study the structure of compact GO-spaces and give some sufficient conditions for existence and non-existence of an invariant metric g with homogeneous geodesics on a homogeneous space of a compact Lie group G. We give a classification of compact simply connected GO-spaces (M = G/H,g) of positive Euler characteristic. If the group G is simple and the metric g does not come from a bi-invariant metric of G, then M is one of the flag manifolds M₁ = SO(2n+1)/U(n) or M₂ = Sp(n)/U(1)·Sp(n–1) and g is any invariant metric on M which depends on two real parameters. In both cases, there exists unique (up to a scaling) symmetric metric g₀ such that (M,g0) is the symmetric space M = SO(2n+2)/U(n+1) or, respectively, CP²n⁻¹. The manifolds M₁, M₂ are weakly symmetric spaces.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149121
citation_txt Compact Riemannian Manifolds with Homogeneous Geodesics / D.V. Alekseevsky, Y.G. Nikonorov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ.
work_keys_str_mv AT alekseevskydv compactriemannianmanifoldswithhomogeneousgeodesics
AT nikonorovyg compactriemannianmanifoldswithhomogeneousgeodesics
first_indexed 2025-12-07T13:35:21Z
last_indexed 2025-12-07T13:35:21Z
_version_ 1850856724383137793