On the Structure of Lie Pseudo-Groups
We compare and contrast two approaches to the structure theory for Lie pseudo-groups, the first due to Cartan, and the second due to the first two authors. We argue that the latter approach offers certain advantages from both a theoretical and practical standpoint.
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2009 |
| Hauptverfasser: | Olver, P.J., Pohjanpelto, J., Valiquette, F. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2009
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/149122 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | On the Structure of Lie Pseudo-Groups / P.J. Olver, J. Pohjanpelto, F. Valiquette // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 25 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
On Free Pseudo-Product Fundamental Graded Lie Algebras
von: Yatsui, T.
Veröffentlicht: (2012) -
Cauchy Problem for a Darboux Integrable Wave Map System and Equations of Lie Type
von: Vassiliou, P.J.
Veröffentlicht: (2013) -
Reduction of Symplectic Lie Algebroids by a Lie Subalgebroid and a Symmetry Lie Group
von: Iglesias, D., et al.
Veröffentlicht: (2007) -
Geodesic Flow and Two (Super) Component Analog of the Camassa-Holm Equation
von: Guha, P., et al.
Veröffentlicht: (2006) -
Differential Invariants of Conformal and Projective Surfaces
von: Hubert, E., et al.
Veröffentlicht: (2007)