Second-Order Conformally Equivariant Quantization in Dimension 1|2

This paper is the next step of an ambitious program to develop conformally equivariant quantization on supermanifolds. This problem was considered so far in (super)dimensions 1 and 1|1. We will show that the case of several odd variables is much more difficult. We consider the supercircle S1|2 equip...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2009
Автор: Mellouli, N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149129
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Second-Order Conformally Equivariant Quantization in Dimension 1|2 / N. Mellouli // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:This paper is the next step of an ambitious program to develop conformally equivariant quantization on supermanifolds. This problem was considered so far in (super)dimensions 1 and 1|1. We will show that the case of several odd variables is much more difficult. We consider the supercircle S1|2 equipped with the standard contact structure. The conformal Lie superalgebra K(2) of contact vector fields on S1|2 contains the Lie superalgebra osp(2|2). We study the spaces of linear differential operators on the spaces of weighted densities as modules over osp(2|2). We prove that, in the non-resonant case, the spaces of second order differential operators are isomorphic to the corresponding spaces of symbols as osp(2|2)-modules. We also prove that the conformal equivariant quantization map is unique and calculate its explicit formula.
ISSN:1815-0659