Second-Order Conformally Equivariant Quantization in Dimension 1|2

This paper is the next step of an ambitious program to develop conformally equivariant quantization on supermanifolds. This problem was considered so far in (super)dimensions 1 and 1|1. We will show that the case of several odd variables is much more difficult. We consider the supercircle S1|2 equip...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2009
Автор: Mellouli, N.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149129
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Second-Order Conformally Equivariant Quantization in Dimension 1|2 / N. Mellouli // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149129
record_format dspace
spelling Mellouli, N.
2019-02-19T17:34:36Z
2019-02-19T17:34:36Z
2009
Second-Order Conformally Equivariant Quantization in Dimension 1|2 / N. Mellouli // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 17B10; 17B68; 53D55
https://nasplib.isofts.kiev.ua/handle/123456789/149129
This paper is the next step of an ambitious program to develop conformally equivariant quantization on supermanifolds. This problem was considered so far in (super)dimensions 1 and 1|1. We will show that the case of several odd variables is much more difficult. We consider the supercircle S1|2 equipped with the standard contact structure. The conformal Lie superalgebra K(2) of contact vector fields on S1|2 contains the Lie superalgebra osp(2|2). We study the spaces of linear differential operators on the spaces of weighted densities as modules over osp(2|2). We prove that, in the non-resonant case, the spaces of second order differential operators are isomorphic to the corresponding spaces of symbols as osp(2|2)-modules. We also prove that the conformal equivariant quantization map is unique and calculate its explicit formula.
I am grateful to H. Gargoubi and V. Ovsienko for the statement of the problem and constant help. I am also pleased to thank D. Leites for critical reading of this paper and a number of helpful suggestions.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Second-Order Conformally Equivariant Quantization in Dimension 1|2
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Second-Order Conformally Equivariant Quantization in Dimension 1|2
spellingShingle Second-Order Conformally Equivariant Quantization in Dimension 1|2
Mellouli, N.
title_short Second-Order Conformally Equivariant Quantization in Dimension 1|2
title_full Second-Order Conformally Equivariant Quantization in Dimension 1|2
title_fullStr Second-Order Conformally Equivariant Quantization in Dimension 1|2
title_full_unstemmed Second-Order Conformally Equivariant Quantization in Dimension 1|2
title_sort second-order conformally equivariant quantization in dimension 1|2
author Mellouli, N.
author_facet Mellouli, N.
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description This paper is the next step of an ambitious program to develop conformally equivariant quantization on supermanifolds. This problem was considered so far in (super)dimensions 1 and 1|1. We will show that the case of several odd variables is much more difficult. We consider the supercircle S1|2 equipped with the standard contact structure. The conformal Lie superalgebra K(2) of contact vector fields on S1|2 contains the Lie superalgebra osp(2|2). We study the spaces of linear differential operators on the spaces of weighted densities as modules over osp(2|2). We prove that, in the non-resonant case, the spaces of second order differential operators are isomorphic to the corresponding spaces of symbols as osp(2|2)-modules. We also prove that the conformal equivariant quantization map is unique and calculate its explicit formula.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149129
citation_txt Second-Order Conformally Equivariant Quantization in Dimension 1|2 / N. Mellouli // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT melloulin secondorderconformallyequivariantquantizationindimension12
first_indexed 2025-12-07T17:55:09Z
last_indexed 2025-12-07T17:55:09Z
_version_ 1850873069259718656