Comment on ''Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty''

We demonstrate that the recent paper by Jana and Roy entitled ''Non-Hermitian quantum mechanics with minimal length uncertainty'' [SIGMA 5 (2009), 083, 7 pages, arXiv:0908.1755] contains various misconceptions. We compare with an analysis on the same topic carried out previously...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2009
Автори: Bagchi, B., Fring, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149130
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Comment on ''Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty'' / B. Bagchi, A. Fring // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 2 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149130
record_format dspace
spelling Bagchi, B.
Fring, A.
2019-02-19T17:34:55Z
2019-02-19T17:34:55Z
2009
Comment on ''Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty'' / B. Bagchi, A. Fring // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 2 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 81Q10; 46C15; 81Q12
https://nasplib.isofts.kiev.ua/handle/123456789/149130
We demonstrate that the recent paper by Jana and Roy entitled ''Non-Hermitian quantum mechanics with minimal length uncertainty'' [SIGMA 5 (2009), 083, 7 pages, arXiv:0908.1755] contains various misconceptions. We compare with an analysis on the same topic carried out previously in our manuscript [arXiv:0907.5354]. In particular, we show that the metric operators computed for the deformed non-Hermitian Swanson models differs in both cases and is inconsistent in the former.
This paper is a contribution to the Proceedings of the 5-th Microconference “Analytic and Algebraic Methods V”.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Comment on ''Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty''
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Comment on ''Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty''
spellingShingle Comment on ''Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty''
Bagchi, B.
Fring, A.
title_short Comment on ''Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty''
title_full Comment on ''Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty''
title_fullStr Comment on ''Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty''
title_full_unstemmed Comment on ''Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty''
title_sort comment on ''non-hermitian quantum mechanics with minimal length uncertainty''
author Bagchi, B.
Fring, A.
author_facet Bagchi, B.
Fring, A.
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We demonstrate that the recent paper by Jana and Roy entitled ''Non-Hermitian quantum mechanics with minimal length uncertainty'' [SIGMA 5 (2009), 083, 7 pages, arXiv:0908.1755] contains various misconceptions. We compare with an analysis on the same topic carried out previously in our manuscript [arXiv:0907.5354]. In particular, we show that the metric operators computed for the deformed non-Hermitian Swanson models differs in both cases and is inconsistent in the former.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149130
citation_txt Comment on ''Non-Hermitian Quantum Mechanics with Minimal Length Uncertainty'' / B. Bagchi, A. Fring // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 2 назв. — англ.
work_keys_str_mv AT bagchib commentonnonhermitianquantummechanicswithminimallengthuncertainty
AT fringa commentonnonhermitianquantummechanicswithminimallengthuncertainty
first_indexed 2025-12-01T02:22:33Z
last_indexed 2025-12-01T02:22:33Z
_version_ 1850859132934946816