Higher Order Connections
The purpose of this article is to present the theory of higher order connections on vector bundles from a viewpoint inspired by projective differential geometry.
Збережено в:
| Дата: | 2009 |
|---|---|
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2009
|
| Назва видання: | Symmetry, Integrability and Geometry: Methods and Applications |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/149131 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Higher Order Connections / M.G. Eastwood // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 15 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149131 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1491312025-02-09T21:50:22Z Higher Order Connections Eastwood, M.G. The purpose of this article is to present the theory of higher order connections on vector bundles from a viewpoint inspired by projective differential geometry. This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. It is a pleasure to acknowledge many very useful discussions with Rod Gover. Support from the Australian Research Council is also gratefully acknowledged. 2009 Article Higher Order Connections / M.G. Eastwood // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 15 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 53B05; 58A20 https://nasplib.isofts.kiev.ua/handle/123456789/149131 en Symmetry, Integrability and Geometry: Methods and Applications application/pdf Інститут математики НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| description |
The purpose of this article is to present the theory of higher order connections on vector bundles from a viewpoint inspired by projective differential geometry. |
| format |
Article |
| author |
Eastwood, M.G. |
| spellingShingle |
Eastwood, M.G. Higher Order Connections Symmetry, Integrability and Geometry: Methods and Applications |
| author_facet |
Eastwood, M.G. |
| author_sort |
Eastwood, M.G. |
| title |
Higher Order Connections |
| title_short |
Higher Order Connections |
| title_full |
Higher Order Connections |
| title_fullStr |
Higher Order Connections |
| title_full_unstemmed |
Higher Order Connections |
| title_sort |
higher order connections |
| publisher |
Інститут математики НАН України |
| publishDate |
2009 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149131 |
| citation_txt |
Higher Order Connections / M.G. Eastwood // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 15 назв. — англ. |
| series |
Symmetry, Integrability and Geometry: Methods and Applications |
| work_keys_str_mv |
AT eastwoodmg higherorderconnections |
| first_indexed |
2025-12-01T04:11:39Z |
| last_indexed |
2025-12-01T04:11:39Z |
| _version_ |
1850277680903094272 |
| fulltext |
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 5 (2009), 082, 10 pages
Higher Order Connections?
Michael G. EASTWOOD
Mathematical Sciences Institute, Australian National University, ACT 0200, Australia
E-mail: meastwoo@member.ams.org
Received March 12, 2009, in final form August 10, 2009; Published online August 11, 2009
doi:10.3842/SIGMA.2009.082
Abstract. The purpose of this article is to present the theory of higher order connections
on vector bundles from a viewpoint inspired by projective differential geometry.
Key words: connections; jets; projective differential geometry
2000 Mathematics Subject Classification: 53B05; 58A20
1 Introduction
We begin with a few well-known remarks on commonplace linear connections. Let E denote
a smooth vector bundle on a smooth manifold M (throughout this article we work in the smooth
category but all constructions go through mutatis mutandis in the holomorphic category). A con-
nection on E may be defined as a splitting of the first jet exact sequence [13]
0 → Λ1 ⊗ E → J1E → E → 0,
where Λ1 is the bundle of 1-forms on M . Equivalently, a connection on E is a first order linear
differential operator
∇ : E → Λ1 ⊗ E
whose symbol Λ1⊗E → Λ1⊗E is the identity. A connection on E induces a natural differential
operator
∇ : Λ1 ⊗ E → Λ2 ⊗ E, characterised by ∇(ω ⊗ s) = dω ⊗ s− ω ∧∇s
and the composition
E
∇−→ Λ1 ⊗ E
∇−→ Λ2 ⊗ E
is a homomorphism of vector bundles called the curvature of ∇.
In this article, a kth order connection on E is a splitting of the kth jet exact sequence
0 →
⊙kΛ1 ⊗ E → JkE → Jk−1E → 0, (1)
where
⊙kΛ1 is the kth symmetric power of Λ1. Libermann [11, p. 155] considers these higher
order connections (more their semi-holonomic counterparts) but does not pursue them so much
along the lines done below. Other notions of higher order connections are due to various authors
including Ehresmann [8], Virsik [14], and Yuen [15]. A kth order connection, as above, is
evidently equivalent to a kth order linear differential operator
∇(k) : E →
⊙kΛ1 ⊗ E
whose symbol
⊙kΛ1 ⊗ E →
⊙kΛ1 ⊗ E is the identity. In the rest of this article, we motivate
and extend the notion of curvature et cetera to these higher order connections. On the way, we
shall encounter various useful constructions and assemble evidence for a final conjecture.
?This paper is a contribution to the Special Issue “Élie Cartan and Differential Geometry”. The full collection
is available at http://www.emis.de/journals/SIGMA/Cartan.html
mailto:meastwoo@member.ams.org
http://dx.doi.org/10.3842/SIGMA.2009.082
http://www.emis.de/journals/SIGMA/Cartan.html
2 M.G. Eastwood
2 Interlude on projective geometry
Let ∂a denote the usual partial differential operator ∂/∂xa on Rn with coördinates xa. If
a smooth 1-form ωa is obtained as the exterior derivative ∂af of a smooth function f , then
∂aωb is necessarily symmetric in its indices and, conversely, this condition is locally sufficient
to ensure that ωa = ∂af for some f . Otherwise said, if we denote the skew part of a tensor
by enclosing the relevant indices in square brackets, then being in the kernel of the operator
ωa 7→ ∂[aωb] is the local integrability condition for the range of f 7→ ∂af . Of course, these
operators are the first two in the de Rham complex
Λ0 d−→ Λ1 d−→ Λ2 d−→ · · · d−→ Λn−1 d−→ Λn.
Now consider the differential operator on Rn
d(k) : Λ0 →
⊙kΛ1 given by f 7→ ∂a∂b · · · ∂cf (k derivatives).
Evidently, if a symmetric covariant tensor ωab···c with k indices is of the form ∂a∂b · · · ∂cf for
some f , then ∂[aωb]c···d = 0. Just as in the case k = 1, this necessary condition is also locally
sufficient to identify the range of d(k). This is a result from projective differential geometry,
a full discussion of which may be found in [7]. Here, suffice it to give the following derivation.
Let us define a connection ∇a on the bundle T ≡ Λ0 ⊕ Λ1 by
∇a
[
f
µb
]
≡
[
∂af − µa
∂aµb
]
.
Notice that
∇a∇b
[
f
µc
]
= ∇a
[
∂bf − µb
∂bµc
]
=
[
∂a(∂bf − µb)− ∂bµa
∂a∂bµc
]
=
[
∂a∂bf − ∂aµb − ∂bµa
∂a∂bµc
]
is symmetric in ab. In other words, the connection ∇a on T is flat. It follows immediately, that
the coupled de Rham complex
Λ0 ⊗ T ∇−→ Λ1 ⊗ T ∇−→ Λ2 ⊗ T ∇−→ · · · ∇−→ Λn−1 ⊗ T ∇−→ Λn ⊗ T
is locally exact. In particular, we conclude that locally[
φa
ωab
]
=
[
∂af − µa
∂aµb
]
for some
[
f
µb
]
if and ony if
[
∂[aφb] + ω[ab]
∂[aωb]c
]
= 0.
In particular, if we take φa = 0 and ωab to be symmetric, then this statement reads
ωab = ∂a∂bf for some f if and only if ∂[aωb]c = 0,
as required in case k = 2. The general case may be similarly derived from the induced flat
connection on
⊙k−1T. In order further to untangle the consequences of the local exactness
of these coupled de Rham sequences, it is useful to define various additional tensor bundles.
Let Θp,q be the bundle (used here on Rn but let us maintain the same notation on a general
manifold) whose sections are covariant tensors satisfying the following symmetries
φa · · · b︸ ︷︷ ︸
p
cd · · · e︸ ︷︷ ︸
q
= φ[a···b](cd···e) such that φ[a···bc]d···e = 0,
where enclosing indices in round brackets means to take the symmetric part. These include the
bundles we have encountered so far
Λp = Θp,0 and
⊙kΛ1 = Θ1,k−1
Higher Order Connections 3
and also accommodate the local integrability conditions for the range of f 7→ ∂a∂b · · · ∂cf .
Sorting out the meaning of local exactness for the coupled de Rham complex Λ• ⊗
⊙k−1T, we
find that there are locally exact complexes on Rn
Λ0 ∂(k)
−−−→ Θ1,k−1 ∂−→ Θ2,k−1 ∂−→ · · · ∂−→ Θn−1,k−1 ∂−→ Θn,k−1 (2)
for all k ≥ 1 with the case k = 1 being the de Rham complex itself. Details are left to the
reader. These complexes are special cases of the Bernstein–Gelfand–Gelfand (BGG) complex
on real projective space RPn viewed in a standard affine coördinate patch Rn ↪→ RPn. Details
may be found in [7]. An independent construction was given by Olver [12].
3 Curvature
The integrability conditions found in § 2 provide the motivation for the following construction.
Theorem 1. A kth order connection ∇(k) : E →
⊙kΛ1 ⊗ E = Θ1,k−1 ⊗ E canonically induces
a first order operator ∇ : Θ1,k−1⊗E → Θ2,k−1⊗E characterised by the following two properties
• its symbol Λ1 ⊗
⊙kΛ1 ⊗ E → Θ2,k−1 ⊗ E is δ ⊗ Id where δ : Λ1 ⊗
⊙kΛ1 → Θ2,k−1 is the
tensorial homomorphism φabc···d
δ7−→ φ[ab]c···d;
• the composition E
∇(k)
−−−→
⊙kΛ1 ⊗ E
∇−→ Θ2,k−1 ⊗ E has order k − 1.
Proof. If we choose an arbitrary local trivialisation of E and local coördinates on M , then
s
∇(k)
7−−−→
k︷ ︸︸ ︷
∂(b∂c∂d · · · ∂e) s + Γbcd···e
fg···h
k−1︷ ︸︸ ︷
∂f∂g · · · ∂h s + lower order terms
for a uniquely defined tensor Γbcd···e
fg···h symmetric in both its lower and upper indices and
having values in End(E). But then
ωbcd···e
∇7−→ ∂[aωb]cd···e + Γcd···e[a
fg···hωb]fg···h
is forced by the two characterising properties of ∇. �
Definition 1. We shall refer to the composition
E
∇◦∇(k)
−−−−−→ Θ2,k−1 ⊗ E
as the curvature of ∇(k). Of course, when k = 1 this is the usual notion of curvature E → Λ2⊗E
for a (first order) connection on E. The operator ∂(k) on Rn has zero curvature.
An alternative construction, both of the operator ∇ :
⊙kΛ1 ⊗ E → Θ2,k−1 ⊗ E and the
curvature E → Θ2,k−1 ⊗ E, may be given by expressing higher order connections in terms of
commonplace connections on the jet bundle Jk−1E as follows. Recall that the Spencer operator
is a canonically defined first order differential operator S : J `E → Λ1⊗J `−1E characterised by
the following properties [9, Propositions 4 and 5]:
• its symbol is Λ1 ⊗ J `E
Id⊗π−−−→ Λ1 ⊗ J `−1E where π is the canonical jet projection;
• the sequence E
j`
−→ J `E
S−→ Λ1 ⊗ J `−1E, where j` is the universal `th order differential
operator, is locally exact.
4 M.G. Eastwood
As a splitting of (1), we may regard a kth order connection as a homomorphism h : Jk−1E → JkE
such that π ◦ h = Id. Composing with the Spencer operator
Jk−1E
h−→ JkE
S−→ Λ1 ⊗ Jk−1E (3)
gives a first order differential operator ∇ ≡ S ◦ h whose symbol Λ1 ⊗ Jk−1E → Λ1 ⊗ Jk−1E is
the identity, in order words a connection on Jk−1E. (In the holomorphic category, Jahnke and
Radloff already observed [10] that a splitting of the jet exact sequence (1) implied the vanishing
of the Atiyah obstruction [2] to Jk−1E admitting a connection but (3) is stronger in actually
creating the desired connection.)
Theorem 2. A kth order connection on a vector bundle E induces a commonplace connection
on the jet bundle Jk−1E with the following properties
• the composition Jk−1E
∇−→ Λ1 ⊗ Jk−1E
Id⊗π−−−→ Λ1 ⊗ Jk−2E is the Spencer operator;
• its curvature κ : Jk−1E → Λ2 ⊗ Jk−1E has values in Λ2 ⊗
⊙k−1Λ1 ⊗ E ↪→ Λ2 ⊗ Jk−1E.
Conversely, a connection on Jk−1E with these two properties uniquely characterises a kth order
connection on E.
Proof. As observed in [9], the Spencer operator induces first order differential operators
S : Λ1 ⊗ J `E → Λ2 ⊗ J `−1E defined by S(ω ⊗ s) = dω ⊗ πs− ω ∧ Ss (4)
and there is a commutative diagram [9, (31)]
0 E = E
↓ jk↓ jk−1↓
0 →
⊙kΛ1 ⊗ E → JkE
π−→ Jk−1E → 0
↓ S↓ S↓
0 → Λ1 ⊗
⊙k−1Λ1 ⊗ E → Λ1 ⊗ Jk−1E
Id⊗π−−−→ Λ1 ⊗ Jk−2E → 0
↓ S↓ S↓
0 → Λ2 ⊗
⊙k−2Λ1 ⊗ E → Λ2 ⊗ Jk−2E
Id⊗π−−−→ Λ2 ⊗ Jk−3E → 0
...
...
...
(5)
with exact rows of vector bundle homomorphisms and locally exact columns of linear differential
operators (apart from the first column, which consists of homomorphisms starting with −ι⊗ Id
where ι :
⊙kΛ1 ↪→ Λ1⊗
⊙k−1Λ1 is the natural inclusion). For the first characterising property
of ∇, we compute from (3) and (5):
(Id⊗ π) ◦ ∇ = (Id⊗ π) ◦ S ◦ h = S ◦ π ◦ h = S ◦ Id = S,
as required. To compute the curvature κ of ∇ we must consider the induced operator
∇ : Λ1 ⊗ Jk−1E → Λ2 ⊗ Jk−1E defined by ∇(ω ⊗ s) = dω ⊗ s− ω ∧∇s.
Composing this formula with Id⊗ π : Λ2 ⊗ Jk−1E → Λ2 ⊗ Jk−2E gives
(Id⊗ π) ◦ ∇(ω ⊗ s) = dω ⊗ πs− ω ∧ (Id⊗ π) ◦ ∇s = dω ⊗ πs− ω ∧ Ss,
by the first property of ∇ established above. From (4) we conclude that
(Id⊗ π) ◦ ∇ = S : Λ1 ⊗ Jk−1E → Λ2 ⊗ Jk−2E. (6)
Higher Order Connections 5
Therefore,
(Id⊗ π) ◦ κ = (Id⊗ π) ◦ ∇ ◦ ∇ = S ◦ ∇ = S ◦ S ◦ h = 0, because S ◦ S = 0.
From the exactness of 0 → Λ2 ⊗
⊙k−1Λ1 ⊗ E → Λ2 ⊗ Jk−1E → Λ2 ⊗ Jk−2E → 0, it follows
that κ takes values in Λ2 ⊗
⊙k−1Λ1 ⊗ E, as required.
Conversely, given a connection ∇ on Jk−1E satisfying the two properties in the statement of
the theorem, let us define a kth order differential operator
∇(k) : E → Λ1 ⊗ Jk−1E as the composition ∇ ◦ jk−1.
From the first property of ∇ we observe that
(Id⊗ π) ◦ ∇(k) = (Id⊗ π) ◦ ∇ ◦ jk−1 = S ◦ jk−1 = 0
and, with reference to (5), deduce that, in fact,
∇(k) : E → Λ1 ⊗
⊙k−1Λ1 ⊗ E.
It is easy to check that its symbol
⊙kΛ1⊗E → Λ1⊗
⊙k−1Λ1⊗E is the natural inclusion ι⊗ Id.
Therefore, to show that ∇(k) is, in fact, a kth order connection, it suffices to show that ∇(k)
takes values in
⊙kΛ1⊗E and, with reference to (5), for this it suffices to show that S◦∇(k) = 0.
For this we may compute using (6) and our definition of ∇(k):
S ◦ ∇(k) = (Id⊗ π) ◦ ∇ ◦ ∇ ◦ jk−1 = (Id⊗ π) ◦ κ ◦ jk−1 = 0 ◦ jk−1 = 0,
as required. Finally, we must check that this construction does indeed provide an inverse to
setting ∇ ≡ S ◦ h. From (5), the usual splitting rigmarole produces
jk − h ◦ jk−1 : E →
⊙kΛ1 ⊗ E ↪→ JkE.
But, viewing via
⊙kΛ1 ⊗ E
ι⊗Id
↪−−→ Λ1 ⊗
⊙k−1Λ1 ⊗ E ↪→ Λ1 ⊗ Jk−1E (as we were doing) gives
−S ◦ (jk − h ◦ jk−1) = S ◦ h ◦ jk−1 = ∇ ◦ jk−1.
Therefore, the combined effect of ∇(k) h ∇ ≡ S ◦h ∇(k) ≡ ∇◦ J (k−1) is to end up back
where we started. To check that ∇ ∇(k) ≡ ∇ ◦ J (k−1) h ∇ ≡ S ◦ h is also the identity
is a similar unravelling of definitions and is left to the reader. �
Any construction starting with a kth order connection ∇(k) : E →
⊙kΛ1⊗E may, of course,
be carried out using a commonplace connection on the jet bundle Jk−1E in accordance with
Theorem 2. Consider, for example, the composition⊙kΛ1 ⊗ E
ι⊗Id
↪−−→ Λ1 ⊗
⊙k−1Λ1 ⊗ E ↪→ Λ1 ⊗ Jk−1E
∇−→ Λ2 ⊗ Jk−1E (7)
where Λ1 ⊗ Jk−1E
∇−→ Λ2 ⊗ Jk−1E is the usual induced first order operator. By (6), if we
further compose with Id⊗ π : Λ2 ⊗ Jk−1E → Λ2 ⊗ Jk−2E then we obtain⊙kΛ1 ⊗ E
ι⊗Id
↪−−→ Λ1 ⊗
⊙k−1Λ1 ⊗ E ↪→ Λ1 ⊗ Jk−1E
S−→ Λ2 ⊗ Jk−2E,
which vanishes by dint of (5). Therefore (7) actually has range in Λ2 ⊗
⊙k−1⊗E and, in fact,
has range in Θ2,k−1 ⊗ E as follows. According to the commutative square
Λ2 ⊗
⊙k−1Λ1 ⊗ E ↪→ Λ2 ⊗ Jk−1E
↓ S↓
Λ3 ⊗
⊙k−2Λ1 ⊗ E ↪→ Λ3 ⊗ Jk−2E,
6 M.G. Eastwood
we must show that composing (7) with S : Λ2 ⊗ Jk−1E → Λ3 ⊗ Jk−2E gives zero. But
Λ1 ⊗ Jk−1E
∇−→ Λ2 ⊗ Jk−1E
κ↓ S↓
Λ3 ⊗ Jk−1E
Id⊗π−−−→ Λ3 ⊗ Jk−2E
also commutes and we see that S ◦∇ = 0 from the curvature restriction imposed by the second
condition in Theorem 2. In summary, the composition (7) takes values in Θ2,k−1 ⊗ E and, of
course, it is the first order differential operator characterised in Theorem 1. Similarly, the two
conditions imposed by Theorem 2 on a connection on Jk−1E imply that its curvature
κ : Jk−1E → Λ2 ⊗ Jk−1E
actually takes values in Θ2,k−1⊗E and as a (k−1)st order differential operator on E it coincides
with ∇ ◦∇(k).
4 Application to prolongation
In joint work in progress with Rod Gover, higher order connections are used as follows. Suppose
D : E → F is a linear differential operator of order k with surjective symbol. The diagram
0 0
↓ ↓
0 → K → T → Jk−1E → 0
↓ ↓ ‖
0 →
⊙kΛ1 ⊗ E → JkE → Jk−1E → 0
σ(D)↓ D↓
F = F
↓ ↓
0 0
(8)
with exact rows and columns defines the bundles K and T. Furthermore, a splitting of
0 → K → T → E → 0 (9)
evidently splits the middle row of (8). Thus, a splitting of (9) induces a kth order connection ∇(k)
on E such that D = σ(D) ◦ ∇(k). In combination with Theorem 2, we see that
Dφ = 0 ⇐⇒ ∇(k)φ = ω ⇐⇒ ∇φ̃ = ω,
where ω is some section of K and φ̃ = jk−1φ ∈ Γ(M,Jk−1E). Now, according to Theorem 1
and the discussion at the end of the previous section, the operator ∇ :
⊙kΛ1⊗E → Θ2,k−1⊗E
applied to ω may be written as κφ̃ where κ is the curvature of the connection ∇ on Jk−1E. The
upshot of this reasoning is that the equation Dφ = 0 may be rewritten as the following system
∇φ̃ = ω,
∇ω = κφ̃,
for (φ̃, ω) a section of Jk−1E ⊕ K. This is the first step in prolonging the equation Dφ = 0.
With more care, this first step may be taken more invariantly, ending up with a well-defined
first order differential operator on T independent of our choice of splitting of (9). We shall see
an example of this phenomenon in the following section.
Higher Order Connections 7
5 Other BGG-like sequences
In Theorem 1, we saw the start of a sequence of differential operators modelled on the com-
plex (2) from projective differential geometry. In fact, it is not too hard to extend this sequence
all the way
E
∇(k)
−−−→ Θ1,k−1 ⊗ E
∇−→ Θ2,k−1 ⊗ E
∇−→ · · · ∇−→ Θn−1,k−1 ⊗ E
∇−→ Θn,k−1 ⊗ E
as a coupled version of (2). The ingredients for this construction are the connection ∇ on Jk−1E
from Theorem 1 and its relation with Spencer operators S coming from (5). Details are left to
the reader.
Another BGG complex on Rn ↪→ RPn starts with the operator Λ1 →
⊙2Λ1 given by
φa 7−→ ∂(aφb) (10)
and continues with the second order operator (sometimes called the Saint Venant operator)
hab 7−→ ∂a∂chbd − ∂b∂chad − ∂a∂dhbc + ∂b∂dhac. (11)
This suggests that if we are given an arbitrary first order differential operator
D : Λ1 ⊗ E →
⊙2Λ1 ⊗ E
whose symbol is
Λ1 ⊗ Λ1 ⊗ E
� ⊗Id−−−−−→
⊙2Λ1 ⊗ E,
then there should be a canonically defined second order operator⊙2Λ1 ⊗ E → Ξ2,2 ⊗ E
with the same symbol as (11), where Ξp,q is the bundle whose sections are covariant tensors
satisfying the following symmetries
φa · · · b︸ ︷︷ ︸
p
cd · · · e︸ ︷︷ ︸
q
= φ[a···b][cd···e] such that φ[a···bc]d···e = 0.
In fact, inspired by the full BGG-complex on RPn, we might expect a coupled sequence
Λ1 ⊗ E
D−→
⊙2Λ1 ⊗ E → Ξ2,2 ⊗ E → Ξ3,2 ⊗ E → · · · → Ξn−1,2 ⊗ E → Ξn,2 ⊗ E. (12)
This is, indeed, the case. Although it is not clear what should be the counterpart to Theorem 1,
we may canonically construct the desired operators as follows. Consider what becomes of (8):
0 0
↓ ↓
0 → Λ2 ⊗ E → T → Λ1 ⊗ E → 0
↓ ↓ ‖
0 → Λ1 ⊗ Λ1 ⊗ E → J1(Λ1 ⊗ E) → Λ1 ⊗ E → 0
↓ D↓⊙2Λ1 ⊗ E =
⊙2Λ1 ⊗ E
↓ ↓
0 0
(13)
8 M.G. Eastwood
In particular, this diagram defines T and also shows that a splitting of
0 → Λ2 ⊗ E → T → Λ1 ⊗ E → 0
not only enables us to write sections of T as[
φa
µab
]
for
{
φa ∈ Γ(Λ1 ⊗ E),
µab ∈ Γ(Λ2 ⊗ E),
but also splits the middle row of (13), i.e. defines a connection ∇a on Λ1 ⊗ E. In terms of this
connection, the operator D is simply φa
D7−→ ∇(aφb). Now consider the operator
T 3
[
φa
µab
]
7→
[
∇aφb − µab
∇[aµb]c − κabc
dφd −∇[aµc]b + κacb
dφd −∇[bµc]a + κbca
dφd
]
∈ Λ1 ⊗ T,
where κ : Λ1 ⊗ E → Λ2 ⊗ Λ1 ⊗ E is the curvature of ∇. It is a connection on T and a tedious
computation verifies that it is independent of choice of splitting of T. Now consider the coupled
de Rham sequence with values in T derived from this connection
T ∇−→ Λ1 ⊗ T ∇−→ Λ2 ⊗ T ∇−→ Λ3 ⊗ T ∇−→ · · ·
‖ ‖ ‖ ‖
Λ1 ⊗ E Λ1 ⊗ Λ1 ⊗ E Λ2 ⊗ Λ1 ⊗ E Λ3 ⊗ Λ1 ⊗ E
⊕ ↗ ⊕ ↗ ⊕ ↗ ⊕
Λ2 ⊗ E Λ1 ⊗ Λ2 ⊗ E Λ2 ⊗ Λ2 ⊗ E Λ3 ⊗ Λ2 ⊗ E,
(14)
noticing that the restricted operators ↗ are simply homomorphisms given by
µa · · · b︸ ︷︷ ︸
p
cd 7→ −µ[a···bc]d.
When p = 0 this homomorphism is injective. When p = 1 it is an isomorphism. For p ≥ 2 it is
surjective with Ξp,2 ⊗ E as kernel. It is now just diagram chasing to extract (12) from (14).
The Killing operator in Riemannian geometry provides a good example of a first order linear
differential operator to which the reasoning above may be applied. In this example, the bundle E
is trivial and
D : Λ1 →
⊙2Λ1 is given by φa 7→ ∇(aφb),
where ∇a is the Levi-Civita connection. It is a straightforward generalisation of (10). Similarly,
the flat operator (11) is modified by replacing ∂a by ∇a but also by adding suitable zeroth order
curvature terms. Details may be found in [7]. Both of these differential operators have geometric
interpretations. The Killing operator itself gives the infinitesimal change in the Riemannian
metric gab due to the flow of a vector field φa. The next operator⊙2Λ ∇(2)
−−−→ Ξ2,2
gives the infinitesimal change in the Riemann curvature tensor due to a perturbation of gab by
an arbitrary symmetric tensor (i.e. replace gab by gab + εhab for sufficiently small ε, compute
the Riemannian curvature for this new metric, differentiate in ε, and then set ε = 0). The next
operator is an infinitesimal manifestation of the Bianchi identity. This particular BGG complex
on RPn
Λ1 ∇−→
⊙2Λ1 ∇(2)
−−−→ Ξ2,2 ∇−→ Ξ3,2 ∇−→ · · · ∇−→ Ξn−1,2 ∇−→ Ξn,2
Higher Order Connections 9
was also constructed by Calabi [4] as the Riemannian deformation complex for the constant
curvature metric (only constant curvature metrics are projectively flat).
In three dimensions, the deformation of a Riemannian metric coincides with the mathematical
formulation of elasticity in continuum mechanics (see, e.g. [5]). In three dimensions, we may
also choose a volume form εabc to effect an isomorphism Ξ2,2 ∼=
⊙2Λ1 (a reflection of the fact
that in three dimensions there is only Ricci curvature) and rewrite (11) as⊙2Λ1 3 hab 7−→ εa
cdεb
ef∂c∂ehdf ∈
⊙2Λ1 (sometimes written as h 7→ curl curlh).
Also Ξ3,2 ∼= Λ1 and the linearised elasticity complex becomes
Λ1 ∇−→
⊙2Λ1 ∇(2)
−−−→
⊙2Λ1 ∇−→ Λ1,
usually interpreted as displacement 7→ strain 7→ stress 7→ load . A derivation of the complex in
this form on RP3 (by means of a coupled de Rham complex as above) is given in [6]. The close
link between BGG complexes and coupled de Rham complexes (in the flat case) has recently
been modified and then used by Arnold, Falk, and Winther [1] to give new stable finite element
schemes applicable to numerical elasticity.
Having seen two examples thereof, it is natural to conjecture that there are canonically defined
sequences of differential operators modelled on the general projective BGG complex. However,
this remains a conjecture. Notice that there is no direct link between projective differential
geometry and the constructions in this article (and we are not using that the Killing operator
considered above happens to be projectively invariant when suitably interpreted [7]). More
challenging cases of this conjecture are to ask, for s ≥ 2, if
D :
⊙sΛ1 ⊗ E →
⊙s+1Λ1 ⊗ E
is an arbitrary first order differential operator whose symbol is
Λ1 ⊗
⊙sΛ1 ⊗ E
� ⊗Id−−−−−→
⊙s+1Λ1 ⊗ E,
whether there is a canonically defined (s + 1)st order operator⊙s+1Λ1 ⊗ E → Ξs+1,s+1 ⊗ E
whose symbol is proj⊗ Id, where⊙s+1Λ1 ⊗
⊙s+1Λ1 → Ξs+1,s+1
is induced by the canonical projection of GL(n, R)-modules
· · · ⊗ · · · → · · ·
· · ·
.
Even restricting attention to first order operators D, there are many more examples of this
conjecture that might be considered. In general, the conjecture applies to operators whose
symbol is induced by a Cartan product as in [3].
Acknowledgements
It is a pleasure to acknowledge many very useful discussions with Rod Gover. Support from the
Australian Research Council is also gratefully acknowledged.
10 M.G. Eastwood
References
[1] Arnold D.N., Falk R.S., Winther R., Finite element exterior calculus, homological techniques, and applica-
tions, Acta Numer. 15 (2006), 1–155.
[2] Atiyah M.F., Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181–207.
[3] Branson T.P., Čap A., Eastwood M.G., Gover A.R., Prolongations of geometric overdetermined systems,
Internat. J. Math. 17 (2006), 641–664, math.DG/0402100.
[4] Calabi E., On compact Riemannian manifolds with constant curvature I, in Differential Geometry, Proc.
Sympos. Pure Math., Vol. III, Amer. Math. Soc., Providence, R.I., 1961, 155–180.
[5] Ciarlet P.G., An introduction to differential geometry with application to elasticity, J. Elasticity 78/79
(2005), no. 1-3, 1–215.
[6] Eastwood M.G., A complex from linear elasticity, in The Proceedings of the 19th Winter School “Geometry
and Physics” (Srni, 1999), Rend. Circ. Mat. Palermo (2) Suppl. (2000), no. 63, 23–29.
[7] Eastwood M.G., Notes on projective differential geometry, in Symmetries and Overdetermined Systems of
Partial Differential Equations, IMA Vol. Math. Appl., Vol. 144, Springer, New York, 2008, 41–60.
[8] Ehresmann C., Connexions d’ordre supérieur, in Atti Quinto Congr. Un. Mat. Ital. (Pavia-Torino, 1955),
Edizioni Cremonese, 1956, 326–328.
[9] Goldschmidt H., Prolongations of linear partial differential equations. I. A conjecture of Élie Cartan, Ann.
Sci. École Norm. Sup. (4) 1 (1968), 417–444.
[10] Jahnke P., Radloff I., Splitting jet sequences, Math. Res. Lett. 11 (2004), 345–354, math.AG/0210454.
[11] Libermann P., Sur la géométrie des prolongements des espaces fibrés vectoriels, Ann. Inst. Fourier (Greno-
ble) 14 (1964), 145–172.
[12] Olver P.J., Differential hyperforms I, Mathematics Report 82-101, University of Minnesota, 1982, available
at http://www.math.umn.edu/∼olver/a /hyper.pdf.
[13] Spencer D.C., Overdetermined systems of linear partial differential equations, Bull. Amer. Math. Soc. 75
(1969), 179–239.
[14] Virsik J., Non-holonomic connections on vector bundles. II, Czechoslovak Math. J. 17 (1967), 200–224.
[15] Yuen P.C., Higher order frames and linear connections, Cahiers Topologie Géom. Différentielle 12 (1971),
333–371.
http://arxiv.org/abs/math.DG/0402100
http://arxiv.org/abs/math.AG/0210454
http://www.math.umn.edu/~olver/a_/hyper.pdf
1 Introduction
2 Interlude on projective geometry
3 Curvature
4 Application to prolongation
5 Other BGG-like sequences
References
|