Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
We consider trigonometric solutions of WDVV equations and derive geometric conditions when a collection of vectors with multiplicities determines such a solution. We incorporate these conditions into the notion of trigonometric Veselov system (∨-system) and we determine all trigonometric ∨-systems w...
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2009 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2009
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/149132 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems / M.V. Feigin // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | We consider trigonometric solutions of WDVV equations and derive geometric conditions when a collection of vectors with multiplicities determines such a solution. We incorporate these conditions into the notion of trigonometric Veselov system (∨-system) and we determine all trigonometric ∨-systems with up to five vectors. We show that generalized Calogero-Moser-Sutherland operator admits a factorized eigenfunction if and only if it corresponds to the trigonometric ∨-system; this inverts a one-way implication observed by Veselov for the rational solutions.
|
|---|---|
| ISSN: | 1815-0659 |