Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems

We consider trigonometric solutions of WDVV equations and derive geometric conditions when a collection of vectors with multiplicities determines such a solution. We incorporate these conditions into the notion of trigonometric Veselov system (∨-system) and we determine all trigonometric ∨-systems w...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2009
Main Author: Feigin, M.V.
Format: Article
Language:English
Published: Інститут математики НАН України 2009
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/149132
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems / M.V. Feigin // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149132
record_format dspace
spelling Feigin, M.V.
2019-02-19T17:35:38Z
2019-02-19T17:35:38Z
2009
Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems / M.V. Feigin // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 35Q40; 52C99
https://nasplib.isofts.kiev.ua/handle/123456789/149132
We consider trigonometric solutions of WDVV equations and derive geometric conditions when a collection of vectors with multiplicities determines such a solution. We incorporate these conditions into the notion of trigonometric Veselov system (∨-system) and we determine all trigonometric ∨-systems with up to five vectors. We show that generalized Calogero-Moser-Sutherland operator admits a factorized eigenfunction if and only if it corresponds to the trigonometric ∨-system; this inverts a one-way implication observed by Veselov for the rational solutions.
I am very grateful to L. Hoevenaars, A. Kirpichnikova, M. Pavlov, I. Strachan and A.P. Veselov for useful and stimulating discussions. The work was partially supported by the EPSRC grant EP/F032889/1, by European research network ENIGMA (contract MRTN-CT-2004-5652), by PMI2 Project funded by the UK Department for Innovation, Universities and Skills for the benefit of the Japanese Higher Education Sector and the UK Higher Education Sector.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
spellingShingle Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
Feigin, M.V.
title_short Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
title_full Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
title_fullStr Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
title_full_unstemmed Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems
title_sort trigonometric solutions of wdvv equations and generalized calogero-moser-sutherland systems
author Feigin, M.V.
author_facet Feigin, M.V.
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We consider trigonometric solutions of WDVV equations and derive geometric conditions when a collection of vectors with multiplicities determines such a solution. We incorporate these conditions into the notion of trigonometric Veselov system (∨-system) and we determine all trigonometric ∨-systems with up to five vectors. We show that generalized Calogero-Moser-Sutherland operator admits a factorized eigenfunction if and only if it corresponds to the trigonometric ∨-system; this inverts a one-way implication observed by Veselov for the rational solutions.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149132
citation_txt Trigonometric Solutions of WDVV Equations and Generalized Calogero-Moser-Sutherland Systems / M.V. Feigin // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT feiginmv trigonometricsolutionsofwdvvequationsandgeneralizedcalogeromosersutherlandsystems
first_indexed 2025-12-07T18:57:15Z
last_indexed 2025-12-07T18:57:15Z
_version_ 1850876976204611584