Holonomy and Projective Equivalence in 4-Dimensional Lorentz Manifolds

A study is made of 4-dimensional Lorentz manifolds which are projectively related, that is, whose Levi-Civita connections give rise to the same (unparameterised) geodesics. A brief review of some relevant recent work is provided and a list of new results connecting projective relatedness and the hol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2009
Hauptverfasser: Hall, G.S., Lonie, D.P.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2009
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149137
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Holonomy and Projective Equivalence in 4-Dimensional Lorentz Manifolds / G.S. Hall, D.P. Lonie // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 26 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149137
record_format dspace
spelling Hall, G.S.
Lonie, D.P.
2019-02-19T17:37:20Z
2019-02-19T17:37:20Z
2009
Holonomy and Projective Equivalence in 4-Dimensional Lorentz Manifolds / G.S. Hall, D.P. Lonie // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 26 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 53C29; 53C22; 53C50
https://nasplib.isofts.kiev.ua/handle/123456789/149137
A study is made of 4-dimensional Lorentz manifolds which are projectively related, that is, whose Levi-Civita connections give rise to the same (unparameterised) geodesics. A brief review of some relevant recent work is provided and a list of new results connecting projective relatedness and the holonomy type of the Lorentz manifold in question is given. This necessitates a review of the possible holonomy groups for such manifolds which, in turn, requires a certain convenient classification of the associated curvature tensors. These reviews are provided.
This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Holonomy and Projective Equivalence in 4-Dimensional Lorentz Manifolds
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Holonomy and Projective Equivalence in 4-Dimensional Lorentz Manifolds
spellingShingle Holonomy and Projective Equivalence in 4-Dimensional Lorentz Manifolds
Hall, G.S.
Lonie, D.P.
title_short Holonomy and Projective Equivalence in 4-Dimensional Lorentz Manifolds
title_full Holonomy and Projective Equivalence in 4-Dimensional Lorentz Manifolds
title_fullStr Holonomy and Projective Equivalence in 4-Dimensional Lorentz Manifolds
title_full_unstemmed Holonomy and Projective Equivalence in 4-Dimensional Lorentz Manifolds
title_sort holonomy and projective equivalence in 4-dimensional lorentz manifolds
author Hall, G.S.
Lonie, D.P.
author_facet Hall, G.S.
Lonie, D.P.
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A study is made of 4-dimensional Lorentz manifolds which are projectively related, that is, whose Levi-Civita connections give rise to the same (unparameterised) geodesics. A brief review of some relevant recent work is provided and a list of new results connecting projective relatedness and the holonomy type of the Lorentz manifold in question is given. This necessitates a review of the possible holonomy groups for such manifolds which, in turn, requires a certain convenient classification of the associated curvature tensors. These reviews are provided.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149137
citation_txt Holonomy and Projective Equivalence in 4-Dimensional Lorentz Manifolds / G.S. Hall, D.P. Lonie // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 26 назв. — англ.
work_keys_str_mv AT hallgs holonomyandprojectiveequivalencein4dimensionallorentzmanifolds
AT loniedp holonomyandprojectiveequivalencein4dimensionallorentzmanifolds
first_indexed 2025-12-07T17:14:33Z
last_indexed 2025-12-07T17:14:33Z
_version_ 1850870515723403264