Monopoles and Modifications of Bundles over Elliptic Curves

Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2009
Hauptverfasser: Levin, A.M., Olshanetsky, M.A., Zotov, A.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2009
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149154
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Monopoles and Modifications of Bundles over Elliptic Curves / A.M. Levin, M.A. Olshanetsky, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149154
record_format dspace
spelling Levin, A.M.
Olshanetsky, M.A.
Zotov, A.V.
2019-02-19T17:47:50Z
2019-02-19T17:47:50Z
2009
Monopoles and Modifications of Bundles over Elliptic Curves / A.M. Levin, M.A. Olshanetsky, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 14H70; 14F05; 33E05; 37K20; 81R12
https://nasplib.isofts.kiev.ua/handle/123456789/149154
Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles modifications establish an equivalence between different classical integrable systems. Following Kapustin and Witten we define the modifications in terms of monopole solutions of the Bogomolny equation. We find the Dirac monopole solution in the case R × (elliptic curve). This solution is a three-dimensional generalization of the Kronecker series. We give two representations for this solution and derive a functional equation for it generalizing the Kronecker results. We use it to define Abelian modifications for bundles of arbitrary rank. We also describe non-Abelian modifications in terms of theta-functions with characteristic.
This paper is a contribution to the Proceedings of the Workshop “Elliptic Integrable Systems, Isomonodromy Problems, and Hypergeometric Functions” (July 21–25, 2008, MPIM, Bonn, Germany).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Monopoles and Modifications of Bundles over Elliptic Curves
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Monopoles and Modifications of Bundles over Elliptic Curves
spellingShingle Monopoles and Modifications of Bundles over Elliptic Curves
Levin, A.M.
Olshanetsky, M.A.
Zotov, A.V.
title_short Monopoles and Modifications of Bundles over Elliptic Curves
title_full Monopoles and Modifications of Bundles over Elliptic Curves
title_fullStr Monopoles and Modifications of Bundles over Elliptic Curves
title_full_unstemmed Monopoles and Modifications of Bundles over Elliptic Curves
title_sort monopoles and modifications of bundles over elliptic curves
author Levin, A.M.
Olshanetsky, M.A.
Zotov, A.V.
author_facet Levin, A.M.
Olshanetsky, M.A.
Zotov, A.V.
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles modifications establish an equivalence between different classical integrable systems. Following Kapustin and Witten we define the modifications in terms of monopole solutions of the Bogomolny equation. We find the Dirac monopole solution in the case R × (elliptic curve). This solution is a three-dimensional generalization of the Kronecker series. We give two representations for this solution and derive a functional equation for it generalizing the Kronecker results. We use it to define Abelian modifications for bundles of arbitrary rank. We also describe non-Abelian modifications in terms of theta-functions with characteristic.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149154
fulltext
citation_txt Monopoles and Modifications of Bundles over Elliptic Curves / A.M. Levin, M.A. Olshanetsky, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT levinam monopolesandmodificationsofbundlesoverellipticcurves
AT olshanetskyma monopolesandmodificationsofbundlesoverellipticcurves
AT zotovav monopolesandmodificationsofbundlesoverellipticcurves
first_indexed 2025-11-24T11:44:40Z
last_indexed 2025-11-24T11:44:40Z
_version_ 1850846747327201280