Monopoles and Modifications of Bundles over Elliptic Curves

Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2009
Hauptverfasser: Levin, A.M., Olshanetsky, M.A., Zotov, A.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2009
Schriftenreihe:Symmetry, Integrability and Geometry: Methods and Applications
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149154
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Monopoles and Modifications of Bundles over Elliptic Curves / A.M. Levin, M.A. Olshanetsky, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149154
record_format dspace
fulltext
spelling nasplib_isofts_kiev_ua-123456789-1491542025-02-23T18:52:59Z Monopoles and Modifications of Bundles over Elliptic Curves Levin, A.M. Olshanetsky, M.A. Zotov, A.V. Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles modifications establish an equivalence between different classical integrable systems. Following Kapustin and Witten we define the modifications in terms of monopole solutions of the Bogomolny equation. We find the Dirac monopole solution in the case R × (elliptic curve). This solution is a three-dimensional generalization of the Kronecker series. We give two representations for this solution and derive a functional equation for it generalizing the Kronecker results. We use it to define Abelian modifications for bundles of arbitrary rank. We also describe non-Abelian modifications in terms of theta-functions with characteristic. This paper is a contribution to the Proceedings of the Workshop “Elliptic Integrable Systems, Isomonodromy Problems, and Hypergeometric Functions” (July 21–25, 2008, MPIM, Bonn, Germany). 2009 Article Monopoles and Modifications of Bundles over Elliptic Curves / A.M. Levin, M.A. Olshanetsky, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 14H70; 14F05; 33E05; 37K20; 81R12 https://nasplib.isofts.kiev.ua/handle/123456789/149154 en Symmetry, Integrability and Geometry: Methods and Applications application/pdf Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Modifications of bundles over complex curves is an operation that allows one to construct a new bundle from a given one. Modifications can change a topological type of bundle. We describe the topological type in terms of the characteristic classes of the bundle. Being applied to the Higgs bundles modifications establish an equivalence between different classical integrable systems. Following Kapustin and Witten we define the modifications in terms of monopole solutions of the Bogomolny equation. We find the Dirac monopole solution in the case R × (elliptic curve). This solution is a three-dimensional generalization of the Kronecker series. We give two representations for this solution and derive a functional equation for it generalizing the Kronecker results. We use it to define Abelian modifications for bundles of arbitrary rank. We also describe non-Abelian modifications in terms of theta-functions with characteristic.
format Article
author Levin, A.M.
Olshanetsky, M.A.
Zotov, A.V.
spellingShingle Levin, A.M.
Olshanetsky, M.A.
Zotov, A.V.
Monopoles and Modifications of Bundles over Elliptic Curves
Symmetry, Integrability and Geometry: Methods and Applications
author_facet Levin, A.M.
Olshanetsky, M.A.
Zotov, A.V.
author_sort Levin, A.M.
title Monopoles and Modifications of Bundles over Elliptic Curves
title_short Monopoles and Modifications of Bundles over Elliptic Curves
title_full Monopoles and Modifications of Bundles over Elliptic Curves
title_fullStr Monopoles and Modifications of Bundles over Elliptic Curves
title_full_unstemmed Monopoles and Modifications of Bundles over Elliptic Curves
title_sort monopoles and modifications of bundles over elliptic curves
publisher Інститут математики НАН України
publishDate 2009
url https://nasplib.isofts.kiev.ua/handle/123456789/149154
citation_txt Monopoles and Modifications of Bundles over Elliptic Curves / A.M. Levin, M.A. Olshanetsky, A.V. Zotov // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 21 назв. — англ.
series Symmetry, Integrability and Geometry: Methods and Applications
work_keys_str_mv AT levinam monopolesandmodificationsofbundlesoverellipticcurves
AT olshanetskyma monopolesandmodificationsofbundlesoverellipticcurves
AT zotovav monopolesandmodificationsofbundlesoverellipticcurves
first_indexed 2025-11-24T11:44:40Z
last_indexed 2025-11-24T11:44:40Z
_version_ 1849672000671318016