Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields

Two examples of Diff⁺S¹-invariant closed two-forms obtained from forms on jet bundles, which does not admit equivariant moment maps are presented. The corresponding cohomological obstruction is computed and shown to coincide with a nontrivial Lie algebra cohomology class on H²(X(S¹)).

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2009
Hauptverfasser: Ferreiro Pérez, R., Muñoz Masqué, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2009
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149158
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields / R. Ferreiro Pérez, J. Muñoz Masqué // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149158
record_format dspace
spelling Ferreiro Pérez, R.
Muñoz Masqué, J.
2019-02-19T17:50:20Z
2019-02-19T17:50:20Z
2009
Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields / R. Ferreiro Pérez, J. Muñoz Masqué // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 58D15; 17B56; 22E65; 53D20; 53D30; 58A20
https://nasplib.isofts.kiev.ua/handle/123456789/149158
Two examples of Diff⁺S¹-invariant closed two-forms obtained from forms on jet bundles, which does not admit equivariant moment maps are presented. The corresponding cohomological obstruction is computed and shown to coincide with a nontrivial Lie algebra cohomology class on H²(X(S¹)).
This paper is a contribution to the Special Issue “Elie Cartan and Differential Geometry”. Part of this work started during the stay of the first author at Utah State University under the advice of Professor Ian Anderson. The computations were first obtained by using MAPLE package “Vessiot”. Supported by Ministerio de Ciencia e Innovaci´on of Spain under grant #MTM2008–01386.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields
spellingShingle Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields
Ferreiro Pérez, R.
Muñoz Masqué, J.
title_short Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields
title_full Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields
title_fullStr Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields
title_full_unstemmed Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields
title_sort non-hamiltonian actions and lie-algebra cohomology of vector fields
author Ferreiro Pérez, R.
Muñoz Masqué, J.
author_facet Ferreiro Pérez, R.
Muñoz Masqué, J.
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Two examples of Diff⁺S¹-invariant closed two-forms obtained from forms on jet bundles, which does not admit equivariant moment maps are presented. The corresponding cohomological obstruction is computed and shown to coincide with a nontrivial Lie algebra cohomology class on H²(X(S¹)).
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149158
citation_txt Non-Hamiltonian Actions and Lie-Algebra Cohomology of Vector Fields / R. Ferreiro Pérez, J. Muñoz Masqué // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT ferreiroperezr nonhamiltonianactionsandliealgebracohomologyofvectorfields
AT munozmasquej nonhamiltonianactionsandliealgebracohomologyofvectorfields
first_indexed 2025-12-07T13:15:09Z
last_indexed 2025-12-07T13:15:09Z
_version_ 1850855453697769472