Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials
We obtain the Kirillov vector fields on the set of functions f univalent inside the unit disk, in terms of the Faber polynomials of 1/f(1/z). Our construction relies on the generating function for Faber polynomials.
Saved in:
| Published in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Date: | 2009 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2009
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/149172 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials / H. Airault // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149172 |
|---|---|
| record_format |
dspace |
| spelling |
Airault, H. 2019-02-19T18:00:53Z 2019-02-19T18:00:53Z 2009 Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials / H. Airault // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 17B66; 33C80; 35A30 https://nasplib.isofts.kiev.ua/handle/123456789/149172 We obtain the Kirillov vector fields on the set of functions f univalent inside the unit disk, in terms of the Faber polynomials of 1/f(1/z). Our construction relies on the generating function for Faber polynomials. This paper is a contribution to the Special Issue on Kac–Moody Algebras and Applications. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials |
| spellingShingle |
Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials Airault, H. |
| title_short |
Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials |
| title_full |
Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials |
| title_fullStr |
Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials |
| title_full_unstemmed |
Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials |
| title_sort |
vector fields on the space of functions univalent inside the unit disk via faber polynomials |
| author |
Airault, H. |
| author_facet |
Airault, H. |
| publishDate |
2009 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
We obtain the Kirillov vector fields on the set of functions f univalent inside the unit disk, in terms of the Faber polynomials of 1/f(1/z). Our construction relies on the generating function for Faber polynomials.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149172 |
| citation_txt |
Vector Fields on the Space of Functions Univalent Inside the Unit Disk via Faber Polynomials / H. Airault // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT airaulth vectorfieldsonthespaceoffunctionsunivalentinsidetheunitdiskviafaberpolynomials |
| first_indexed |
2025-12-07T20:01:28Z |
| last_indexed |
2025-12-07T20:01:28Z |
| _version_ |
1850881017186877440 |