Nonlinear Dirac Equations

We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2009
Автори: Wei Khim Ng, Rajesh R. Parwani
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149176
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Nonlinear Dirac Equations / Wei Khim Ng, Rajesh R. Parwani // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 46 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149176
record_format dspace
spelling Wei Khim Ng
Rajesh R. Parwani
2019-02-19T18:13:18Z
2019-02-19T18:13:18Z
2009
Nonlinear Dirac Equations / Wei Khim Ng, Rajesh R. Parwani // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 46 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 81P05; 81Q99; 83A05
https://nasplib.isofts.kiev.ua/handle/123456789/149176
We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Nonlinear Dirac Equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Nonlinear Dirac Equations
spellingShingle Nonlinear Dirac Equations
Wei Khim Ng
Rajesh R. Parwani
title_short Nonlinear Dirac Equations
title_full Nonlinear Dirac Equations
title_fullStr Nonlinear Dirac Equations
title_full_unstemmed Nonlinear Dirac Equations
title_sort nonlinear dirac equations
author Wei Khim Ng
Rajesh R. Parwani
author_facet Wei Khim Ng
Rajesh R. Parwani
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149176
citation_txt Nonlinear Dirac Equations / Wei Khim Ng, Rajesh R. Parwani // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 46 назв. — англ.
work_keys_str_mv AT weikhimng nonlineardiracequations
AT rajeshrparwani nonlineardiracequations
first_indexed 2025-12-07T16:52:12Z
last_indexed 2025-12-07T16:52:12Z
_version_ 1850869109260025856