Hochschild Cohomology and Deformations of Clifford-Weyl Algebras
We give a complete study of the Clifford-Weyl algebra C(n,2k) from Bose-Fermi statistics, including Hochschild cohomology (with coefficients in itself). We show that C(n,2k) is rigid when n is even or when k ≠ 1. We find all non-trivial deformations of C(2n+1,2) and study their representations.
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2009 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2009
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/149177 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Hochschild Cohomology and Deformations of Clifford-Weyl Algebras / I.M. Musson, G. Pinczon, R. Ushirobira // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 28 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of UkraineБудьте першим, хто залишить коментар!