Induced Modules for Affine Lie Algebras

We study induced modules of nonzero central charge with arbitrary multiplicities over affine Lie algebras. For a given pseudo parabolic subalgebra P of an affine Lie algebra G, our main result establishes the equivalence between a certain category of P-induced G-modules and the category of weight P-...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2009
Автори: Futorny, V., Kashuba, I.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149179
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Induced Modules for Affine Lie Algebras / V. Futorny, I. Kashuba // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149179
record_format dspace
spelling Futorny, V.
Kashuba, I.
2019-02-19T18:14:16Z
2019-02-19T18:14:16Z
2009
Induced Modules for Affine Lie Algebras / V. Futorny, I. Kashuba // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 22 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 17B65; 17B67
https://nasplib.isofts.kiev.ua/handle/123456789/149179
We study induced modules of nonzero central charge with arbitrary multiplicities over affine Lie algebras. For a given pseudo parabolic subalgebra P of an affine Lie algebra G, our main result establishes the equivalence between a certain category of P-induced G-modules and the category of weight P-modules with injective action of the central element of G. In particular, the induction functor preserves irreducible modules. If P is a parabolic subalgebra with a finite-dimensional Levi factor then it defines a unique pseudo parabolic subalgebra Pps, P Ì Pps. The structure of P-induced modules in this case is fully determined by the structure of Pps-induced modules. These results generalize similar reductions in particular cases previously considered by V. Futorny, S. König, V. Mazorchuk [Forum Math. 13 (2001), 641-661], B. Cox [Pacific J. Math. 165 (1994), 269-294] and I. Dimitrov, V. Futorny, I. Penkov [Comm. Math. Phys. 250 (2004), 47-63].
This paper is a contribution to the Special Issue on Kac–Moody Algebras and Applications. The first author is supported in part by the CNPq grant (301743/2007-0) and by the Fapesp grant (2005/60337-2). The second author is supported by the Fapesp grant (2007/025861).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Induced Modules for Affine Lie Algebras
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Induced Modules for Affine Lie Algebras
spellingShingle Induced Modules for Affine Lie Algebras
Futorny, V.
Kashuba, I.
title_short Induced Modules for Affine Lie Algebras
title_full Induced Modules for Affine Lie Algebras
title_fullStr Induced Modules for Affine Lie Algebras
title_full_unstemmed Induced Modules for Affine Lie Algebras
title_sort induced modules for affine lie algebras
author Futorny, V.
Kashuba, I.
author_facet Futorny, V.
Kashuba, I.
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study induced modules of nonzero central charge with arbitrary multiplicities over affine Lie algebras. For a given pseudo parabolic subalgebra P of an affine Lie algebra G, our main result establishes the equivalence between a certain category of P-induced G-modules and the category of weight P-modules with injective action of the central element of G. In particular, the induction functor preserves irreducible modules. If P is a parabolic subalgebra with a finite-dimensional Levi factor then it defines a unique pseudo parabolic subalgebra Pps, P Ì Pps. The structure of P-induced modules in this case is fully determined by the structure of Pps-induced modules. These results generalize similar reductions in particular cases previously considered by V. Futorny, S. König, V. Mazorchuk [Forum Math. 13 (2001), 641-661], B. Cox [Pacific J. Math. 165 (1994), 269-294] and I. Dimitrov, V. Futorny, I. Penkov [Comm. Math. Phys. 250 (2004), 47-63].
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149179
citation_txt Induced Modules for Affine Lie Algebras / V. Futorny, I. Kashuba // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT futornyv inducedmodulesforaffineliealgebras
AT kashubai inducedmodulesforaffineliealgebras
first_indexed 2025-12-07T17:51:53Z
last_indexed 2025-12-07T17:51:53Z
_version_ 1850872864556711936