Toeplitz Quantization and Asymptotic Expansions: Geometric Construction

For a real symmetric domain GR/KR, with complexification GC/KC, we introduce the concept of ''star-restriction'' (a real analogue of the ''star-products'' for quantization of Kähler manifolds) and give a geometric construction of the GR-invariant differential...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2009
Автори: Englis, M., Upmeier, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2009
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149182
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Toeplitz Quantization and Asymptotic Expansions: Geometric Construction / M. Englis, H. Upmeier // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 37 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149182
record_format dspace
spelling Englis, M.
Upmeier, H.
2019-02-19T18:19:49Z
2019-02-19T18:19:49Z
2009
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction / M. Englis, H. Upmeier // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 37 назв. — англ.
1815-0659
2000 Mathematics Subject Classification: 32M15; 46E22; 47B35; 53D55
https://nasplib.isofts.kiev.ua/handle/123456789/149182
For a real symmetric domain GR/KR, with complexification GC/KC, we introduce the concept of ''star-restriction'' (a real analogue of the ''star-products'' for quantization of Kähler manifolds) and give a geometric construction of the GR-invariant differential operators yielding its asymptotic expansion.
This paper is a contribution to the Special Issue on Deformation Quantization. Research supported by the German-Israeli Foundation (GIF), I-696-17.6/2001; the Academy of Sciences of the Czech Republic institutional research plan no. AV0Z10190503; and GA CR grant no. 201/06/0128.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
spellingShingle Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
Englis, M.
Upmeier, H.
title_short Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
title_full Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
title_fullStr Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
title_full_unstemmed Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
title_sort toeplitz quantization and asymptotic expansions: geometric construction
author Englis, M.
Upmeier, H.
author_facet Englis, M.
Upmeier, H.
publishDate 2009
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description For a real symmetric domain GR/KR, with complexification GC/KC, we introduce the concept of ''star-restriction'' (a real analogue of the ''star-products'' for quantization of Kähler manifolds) and give a geometric construction of the GR-invariant differential operators yielding its asymptotic expansion.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149182
citation_txt Toeplitz Quantization and Asymptotic Expansions: Geometric Construction / M. Englis, H. Upmeier // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 37 назв. — англ.
work_keys_str_mv AT englism toeplitzquantizationandasymptoticexpansionsgeometricconstruction
AT upmeierh toeplitzquantizationandasymptoticexpansionsgeometricconstruction
first_indexed 2025-12-07T19:49:43Z
last_indexed 2025-12-07T19:49:43Z
_version_ 1850880277361983488