Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
For a real symmetric domain GR/KR, with complexification GC/KC, we introduce the concept of ''star-restriction'' (a real analogue of the ''star-products'' for quantization of Kähler manifolds) and give a geometric construction of the GR-invariant differential...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2009 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2009
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/149182 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Toeplitz Quantization and Asymptotic Expansions: Geometric Construction / M. Englis, H. Upmeier // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 37 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-149182 |
|---|---|
| record_format |
dspace |
| spelling |
Englis, M. Upmeier, H. 2019-02-19T18:19:49Z 2019-02-19T18:19:49Z 2009 Toeplitz Quantization and Asymptotic Expansions: Geometric Construction / M. Englis, H. Upmeier // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 37 назв. — англ. 1815-0659 2000 Mathematics Subject Classification: 32M15; 46E22; 47B35; 53D55 https://nasplib.isofts.kiev.ua/handle/123456789/149182 For a real symmetric domain GR/KR, with complexification GC/KC, we introduce the concept of ''star-restriction'' (a real analogue of the ''star-products'' for quantization of Kähler manifolds) and give a geometric construction of the GR-invariant differential operators yielding its asymptotic expansion. This paper is a contribution to the Special Issue on Deformation Quantization. Research supported by the German-Israeli Foundation (GIF), I-696-17.6/2001; the Academy of Sciences of the Czech Republic institutional research plan no. AV0Z10190503; and GA CR grant no. 201/06/0128. en Інститут математики НАН України Symmetry, Integrability and Geometry: Methods and Applications Toeplitz Quantization and Asymptotic Expansions: Geometric Construction Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction |
| spellingShingle |
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction Englis, M. Upmeier, H. |
| title_short |
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction |
| title_full |
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction |
| title_fullStr |
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction |
| title_full_unstemmed |
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction |
| title_sort |
toeplitz quantization and asymptotic expansions: geometric construction |
| author |
Englis, M. Upmeier, H. |
| author_facet |
Englis, M. Upmeier, H. |
| publishDate |
2009 |
| language |
English |
| container_title |
Symmetry, Integrability and Geometry: Methods and Applications |
| publisher |
Інститут математики НАН України |
| format |
Article |
| description |
For a real symmetric domain GR/KR, with complexification GC/KC, we introduce the concept of ''star-restriction'' (a real analogue of the ''star-products'' for quantization of Kähler manifolds) and give a geometric construction of the GR-invariant differential operators yielding its asymptotic expansion.
|
| issn |
1815-0659 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/149182 |
| citation_txt |
Toeplitz Quantization and Asymptotic Expansions: Geometric Construction / M. Englis, H. Upmeier // Symmetry, Integrability and Geometry: Methods and Applications. — 2009. — Т. 5. — Бібліогр.: 37 назв. — англ. |
| work_keys_str_mv |
AT englism toeplitzquantizationandasymptoticexpansionsgeometricconstruction AT upmeierh toeplitzquantizationandasymptoticexpansionsgeometricconstruction |
| first_indexed |
2025-12-07T19:49:43Z |
| last_indexed |
2025-12-07T19:49:43Z |
| _version_ |
1850880277361983488 |