Old and New Reductions of Dispersionless Toda Hierarchy

This paper is focused on geometric aspects of two particular types of finite-variable reductions in the dispersionless Toda hierarchy. The reductions are formulated in terms of ''Landau-Ginzburg potentials'' that play the role of reduced Lax functions. One of them is a generaliza...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2012
1. Verfasser: Takasaki, K.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2012
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149183
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Old and New Reductions of Dispersionless Toda Hierarchy / K. Takasaki // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 37 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149183
record_format dspace
spelling Takasaki, K.
2019-02-19T18:21:19Z
2019-02-19T18:21:19Z
2012
Old and New Reductions of Dispersionless Toda Hierarchy / K. Takasaki // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 37 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35Q99; 37K10; 53B50; 53D45
DOI: http://dx.doi.org/10.3842/SIGMA.2012.102
https://nasplib.isofts.kiev.ua/handle/123456789/149183
This paper is focused on geometric aspects of two particular types of finite-variable reductions in the dispersionless Toda hierarchy. The reductions are formulated in terms of ''Landau-Ginzburg potentials'' that play the role of reduced Lax functions. One of them is a generalization of Dubrovin and Zhang's trigonometric polynomial. The other is a transcendental function, the logarithm of which resembles the waterbag models of the dispersionless KP hierarchy. They both satisfy a radial version of the Löwner equations. Consistency of these Löwner equations yields a radial version of the Gibbons-Tsarev equations. These equations are used to formulate hodograph solutions of the reduced hierarchy. Geometric aspects of the Gibbons-Tsarev equations are explained in the language of classical differential geometry (Darboux equations, Egorov metrics and Combescure transformations). Flat coordinates of the underlying Egorov metrics are presented.
This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html. We thank the referees for many valuable comments. This work is partly supported by JSPS Grants-in-Aid for Scientific Research No. 21540218 and No. 22540186 from the Japan Society for the Promotion of Science.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Old and New Reductions of Dispersionless Toda Hierarchy
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Old and New Reductions of Dispersionless Toda Hierarchy
spellingShingle Old and New Reductions of Dispersionless Toda Hierarchy
Takasaki, K.
title_short Old and New Reductions of Dispersionless Toda Hierarchy
title_full Old and New Reductions of Dispersionless Toda Hierarchy
title_fullStr Old and New Reductions of Dispersionless Toda Hierarchy
title_full_unstemmed Old and New Reductions of Dispersionless Toda Hierarchy
title_sort old and new reductions of dispersionless toda hierarchy
author Takasaki, K.
author_facet Takasaki, K.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description This paper is focused on geometric aspects of two particular types of finite-variable reductions in the dispersionless Toda hierarchy. The reductions are formulated in terms of ''Landau-Ginzburg potentials'' that play the role of reduced Lax functions. One of them is a generalization of Dubrovin and Zhang's trigonometric polynomial. The other is a transcendental function, the logarithm of which resembles the waterbag models of the dispersionless KP hierarchy. They both satisfy a radial version of the Löwner equations. Consistency of these Löwner equations yields a radial version of the Gibbons-Tsarev equations. These equations are used to formulate hodograph solutions of the reduced hierarchy. Geometric aspects of the Gibbons-Tsarev equations are explained in the language of classical differential geometry (Darboux equations, Egorov metrics and Combescure transformations). Flat coordinates of the underlying Egorov metrics are presented.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149183
citation_txt Old and New Reductions of Dispersionless Toda Hierarchy / K. Takasaki // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 37 назв. — англ.
work_keys_str_mv AT takasakik oldandnewreductionsofdispersionlesstodahierarchy
first_indexed 2025-12-07T16:39:41Z
last_indexed 2025-12-07T16:39:41Z
_version_ 1850868321941979136