On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials

We study the real roots of the Yablonskii-Vorob'ev polynomials, which are special polynomials used to represent rational solutions of the second Painlevé equation. It has been conjectured that the number of real roots of the nth Yablonskii-Vorob'ev polynomial equals [(n+1)/2]. We prove thi...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2012
Main Author: Roffelsen, P.
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/149188
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials / P. Roffelsen // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149188
record_format dspace
spelling Roffelsen, P.
2019-02-19T18:23:01Z
2019-02-19T18:23:01Z
2012
On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials / P. Roffelsen // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 8 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 34M55
DOI: http://dx.doi.org/10.3842/SIGMA.2012.099
https://nasplib.isofts.kiev.ua/handle/123456789/149188
We study the real roots of the Yablonskii-Vorob'ev polynomials, which are special polynomials used to represent rational solutions of the second Painlevé equation. It has been conjectured that the number of real roots of the nth Yablonskii-Vorob'ev polynomial equals [(n+1)/2]. We prove this conjecture using an interlacing property between the roots of the Yablonskii-Vorob'ev polynomials. Furthermore we determine precisely the number of negative and the number of positive real roots of the nth Yablonskii-Vorob'ev polynomial.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
spellingShingle On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
Roffelsen, P.
title_short On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
title_full On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
title_fullStr On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
title_full_unstemmed On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials
title_sort on the number of real roots of the yablonskii-vorob'ev polynomials
author Roffelsen, P.
author_facet Roffelsen, P.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We study the real roots of the Yablonskii-Vorob'ev polynomials, which are special polynomials used to represent rational solutions of the second Painlevé equation. It has been conjectured that the number of real roots of the nth Yablonskii-Vorob'ev polynomial equals [(n+1)/2]. We prove this conjecture using an interlacing property between the roots of the Yablonskii-Vorob'ev polynomials. Furthermore we determine precisely the number of negative and the number of positive real roots of the nth Yablonskii-Vorob'ev polynomial.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149188
citation_txt On the Number of Real Roots of the Yablonskii-Vorob'ev Polynomials / P. Roffelsen // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT roffelsenp onthenumberofrealrootsoftheyablonskiivorobevpolynomials
first_indexed 2025-12-07T19:25:52Z
last_indexed 2025-12-07T19:25:52Z
_version_ 1850878777133891584