Renormalization Method and Mirror Symmetry

This is a brief summary of our works [arXiv:1112.4063, arXiv:1201.4501] on constructing higher genus B-model from perturbative quantization of BCOV theory. We analyze Givental's symplectic loop space formalism in the context of B-model geometry on Calabi-Yau manifolds, and explain the Fock spac...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2012
Main Author: Li, S.
Format: Article
Language:English
Published: Інститут математики НАН України 2012
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/149191
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Renormalization Method and Mirror Symmetry / S. Li // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 29 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149191
record_format dspace
spelling Li, S.
2019-02-19T18:25:19Z
2019-02-19T18:25:19Z
2012
Renormalization Method and Mirror Symmetry / S. Li // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 29 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 14N35; 58A14; 81T15; 81T70
DOI: http://dx.doi.org/10.3842/SIGMA.2012.101
https://nasplib.isofts.kiev.ua/handle/123456789/149191
This is a brief summary of our works [arXiv:1112.4063, arXiv:1201.4501] on constructing higher genus B-model from perturbative quantization of BCOV theory. We analyze Givental's symplectic loop space formalism in the context of B-model geometry on Calabi-Yau manifolds, and explain the Fock space construction via the renormalization techniques of gauge theory. We also give a physics interpretation of the Virasoro constraints as the symmetry of the classical BCOV action functional, and discuss the Virasoro constraints in the quantum theory.
This paper is a contribution to the Special Issue “Mirror Symmetry and Related Topics”. The full collection is available at http://www.emis.de/journals/SIGMA/mirror symmetry.html.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Renormalization Method and Mirror Symmetry
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Renormalization Method and Mirror Symmetry
spellingShingle Renormalization Method and Mirror Symmetry
Li, S.
title_short Renormalization Method and Mirror Symmetry
title_full Renormalization Method and Mirror Symmetry
title_fullStr Renormalization Method and Mirror Symmetry
title_full_unstemmed Renormalization Method and Mirror Symmetry
title_sort renormalization method and mirror symmetry
author Li, S.
author_facet Li, S.
publishDate 2012
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description This is a brief summary of our works [arXiv:1112.4063, arXiv:1201.4501] on constructing higher genus B-model from perturbative quantization of BCOV theory. We analyze Givental's symplectic loop space formalism in the context of B-model geometry on Calabi-Yau manifolds, and explain the Fock space construction via the renormalization techniques of gauge theory. We also give a physics interpretation of the Virasoro constraints as the symmetry of the classical BCOV action functional, and discuss the Virasoro constraints in the quantum theory.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149191
citation_txt Renormalization Method and Mirror Symmetry / S. Li // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 29 назв. — англ.
work_keys_str_mv AT lis renormalizationmethodandmirrorsymmetry
first_indexed 2025-12-01T12:03:00Z
last_indexed 2025-12-01T12:03:00Z
_version_ 1850860205546405888