On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces
We show how to find a complete set of necessary and sufficient conditions that solve the fixed-parameter local congruence problem of immersions in G-spaces, whether homogeneous or not, provided that a certain kth order jet bundle over the G-space admits a G-invariant local coframe field of constant...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2013 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2013
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/149192 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces / J. Cheh // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We show how to find a complete set of necessary and sufficient conditions that solve the fixed-parameter local congruence problem of immersions in G-spaces, whether homogeneous or not, provided that a certain kth order jet bundle over the G-space admits a G-invariant local coframe field of constant structure. As a corollary, we note that the differential order of a minimal complete set of congruence invariants is bounded by k+1. We demonstrate the method by rediscovering the speed and curvature invariants of Euclidean planar curves, the Schwarzian derivative of holomorphic immersions in the complex projective line, and equivalents of the first and second fundamental forms of surfaces in R³ subject to rotations.
|
|---|---|
| ISSN: | 1815-0659 |