On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces

We show how to find a complete set of necessary and sufficient conditions that solve the fixed-parameter local congruence problem of immersions in G-spaces, whether homogeneous or not, provided that a certain kth order jet bundle over the G-space admits a G-invariant local coframe field of constant...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2013
Автор: Cheh, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149192
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces / J. Cheh // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149192
record_format dspace
spelling Cheh, J.
2019-02-19T18:27:40Z
2019-02-19T18:27:40Z
2013
On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces / J. Cheh // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53A55; 53B25
DOI: http://dx.doi.org/10.3842/SIGMA.2013.036
https://nasplib.isofts.kiev.ua/handle/123456789/149192
We show how to find a complete set of necessary and sufficient conditions that solve the fixed-parameter local congruence problem of immersions in G-spaces, whether homogeneous or not, provided that a certain kth order jet bundle over the G-space admits a G-invariant local coframe field of constant structure. As a corollary, we note that the differential order of a minimal complete set of congruence invariants is bounded by k+1. We demonstrate the method by rediscovering the speed and curvature invariants of Euclidean planar curves, the Schwarzian derivative of holomorphic immersions in the complex projective line, and equivalents of the first and second fundamental forms of surfaces in R³ subject to rotations.
This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html. This work has benefited from the discussions held in the Dif ferential Geometry and Lie Theory seminars at the University of Toledo; the author would like to thank the organizers and participants of the seminars. Also, the anonymous referees’ critical and yet helpful comments have contributed significantly in the process of revising and improving the paper; the author is very grateful to the referees. It is hoped that this work serves to reflect, although only to a small extent limited by the author’s meager knowledge, the author’s appreciation of the introduction by Professor Peter Olver to the marvelous unifying philosophy and technology of symmetry, invariance, and equivalence.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces
spellingShingle On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces
Cheh, J.
title_short On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces
title_full On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces
title_fullStr On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces
title_full_unstemmed On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces
title_sort on local congruence of immersions in homogeneous or nonhomogeneous spaces
author Cheh, J.
author_facet Cheh, J.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We show how to find a complete set of necessary and sufficient conditions that solve the fixed-parameter local congruence problem of immersions in G-spaces, whether homogeneous or not, provided that a certain kth order jet bundle over the G-space admits a G-invariant local coframe field of constant structure. As a corollary, we note that the differential order of a minimal complete set of congruence invariants is bounded by k+1. We demonstrate the method by rediscovering the speed and curvature invariants of Euclidean planar curves, the Schwarzian derivative of holomorphic immersions in the complex projective line, and equivalents of the first and second fundamental forms of surfaces in R³ subject to rotations.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149192
citation_txt On Local Congruence of Immersions in Homogeneous or Nonhomogeneous Spaces / J. Cheh // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT chehj onlocalcongruenceofimmersionsinhomogeneousornonhomogeneousspaces
first_indexed 2025-12-07T18:14:57Z
last_indexed 2025-12-07T18:14:57Z
_version_ 1850874315695718400