Vector-Valued Polynomials and a Matrix Weight Function with B₂-Action. II

This is a sequel to [SIGMA 9 (2013), 007, 23 pages], in which there is a construction of a 2×2 positive-definite matrix function K(x) on R². The entries of K(x) are expressed in terms of hypergeometric functions. This matrix is used in the formula for a Gaussian inner product related to the standard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2013
1. Verfasser: Dunkl, C.F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149200
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Vector-Valued Polynomials and a Matrix Weight Function with B₂-Action. II / C.F. Dunkl // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 1 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:This is a sequel to [SIGMA 9 (2013), 007, 23 pages], in which there is a construction of a 2×2 positive-definite matrix function K(x) on R². The entries of K(x) are expressed in terms of hypergeometric functions. This matrix is used in the formula for a Gaussian inner product related to the standard module of the rational Cherednik algebra for the group W(B₂) (symmetry group of the square) associated to the (2-dimensional) reflection representation. The algebra has two parameters: k₀, k₁. In the previous paper K is determined up to a scalar, namely, the normalization constant. The conjecture stated there is proven in this note. An asymptotic formula for a sum of ₃F₂-type is derived and used for the proof.
ISSN:1815-0659