Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems

We develop complex Jacobi, Gegenbauer and Chebyshev polynomial expansions for the kernels associated with power-law fundamental solutions of the polyharmonic equation on d-dimensional Euclidean space. From these series representations we derive Fourier expansions in certain rotationally-invariant co...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2013
Автор: Cohl, H.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149201
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems / H.S. Cohl // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 35 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149201
record_format dspace
spelling Cohl, H.S.
2019-02-19T18:33:49Z
2019-02-19T18:33:49Z
2013
Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems / H.S. Cohl // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 35 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35A08; 31B30; 31C12; 33C05; 42A16
DOI: http://dx.doi.org/10.3842/SIGMA.2013.042
https://nasplib.isofts.kiev.ua/handle/123456789/149201
We develop complex Jacobi, Gegenbauer and Chebyshev polynomial expansions for the kernels associated with power-law fundamental solutions of the polyharmonic equation on d-dimensional Euclidean space. From these series representations we derive Fourier expansions in certain rotationally-invariant coordinate systems and Gegenbauer polynomial expansions in Vilenkin's polyspherical coordinates. We compare both of these expansions to generate addition theorems for the azimuthal Fourier coefficients.
I would like to thank A.F.M. Tom ter Elst and Heather Macbeth for valuable discussions. I would like to express my gratitude to the anonymous referees and an editor at SIGMA whose helpful comments improved this paper. Part of this work was conducted while H.S. Cohl was a National Research Council Research Postdoctoral Associate in the Applied and Computational Mathematics Division at the National Institute of Standards and Technology, Gaithersburg, Maryland, USA.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems
spellingShingle Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems
Cohl, H.S.
title_short Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems
title_full Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems
title_fullStr Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems
title_full_unstemmed Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems
title_sort fourier, gegenbauer and jacobi expansions for a power-law fundamental solution of the polyharmonic equation and polyspherical addition theorems
author Cohl, H.S.
author_facet Cohl, H.S.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We develop complex Jacobi, Gegenbauer and Chebyshev polynomial expansions for the kernels associated with power-law fundamental solutions of the polyharmonic equation on d-dimensional Euclidean space. From these series representations we derive Fourier expansions in certain rotationally-invariant coordinate systems and Gegenbauer polynomial expansions in Vilenkin's polyspherical coordinates. We compare both of these expansions to generate addition theorems for the azimuthal Fourier coefficients.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149201
citation_txt Fourier, Gegenbauer and Jacobi Expansions for a Power-Law Fundamental Solution of the Polyharmonic Equation and Polyspherical Addition Theorems / H.S. Cohl // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 35 назв. — англ.
work_keys_str_mv AT cohlhs fouriergegenbauerandjacobiexpansionsforapowerlawfundamentalsolutionofthepolyharmonicequationandpolysphericaladditiontheorems
first_indexed 2025-12-07T19:48:05Z
last_indexed 2025-12-07T19:48:05Z
_version_ 1850880174452637696