Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries

In this paper, multi-component generalizations to the Camassa-Holm equation, the modified Camassa-Holm equation with cubic nonlinearity are introduced. Geometric formulations to the dual version of the Schrödinger equation, the complex Camassa-Holm equation and the multi-component modified Camassa-H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2013
Hauptverfasser: Qu, C., Song, J., Yao, R.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149204
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries / C. Qu, J. Song, R. Yao // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 60 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149204
record_format dspace
spelling Qu, C.
Song, J.
Yao, R.
2019-02-19T18:35:09Z
2019-02-19T18:35:09Z
2013
Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries / C. Qu, J. Song, R. Yao // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 60 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37K10; 51M05; 51B10
DOI: http://dx.doi.org/10.3842/SIGMA.2013.001
https://nasplib.isofts.kiev.ua/handle/123456789/149204
In this paper, multi-component generalizations to the Camassa-Holm equation, the modified Camassa-Holm equation with cubic nonlinearity are introduced. Geometric formulations to the dual version of the Schrödinger equation, the complex Camassa-Holm equation and the multi-component modified Camassa-Holm equation are provided. It is shown that these equations arise from non-streching invariant curve flows respectively in the three-dimensional Euclidean geometry, the two-dimensional Möbius sphere and n-dimensional sphere Sn(1). Integrability to these systems is also studied.
This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html. The authors would like to thank the anonymous referees for constructive suggestions and comments. This work was supported by the China NSF for Distinguished Young Scholars under Grant 10925104 and the China NSF under Grants 11071278 and 60970054.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
spellingShingle Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
Qu, C.
Song, J.
Yao, R.
title_short Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
title_full Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
title_fullStr Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
title_full_unstemmed Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries
title_sort multi-component integrable systems and invariant curve flows in certain geometries
author Qu, C.
Song, J.
Yao, R.
author_facet Qu, C.
Song, J.
Yao, R.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description In this paper, multi-component generalizations to the Camassa-Holm equation, the modified Camassa-Holm equation with cubic nonlinearity are introduced. Geometric formulations to the dual version of the Schrödinger equation, the complex Camassa-Holm equation and the multi-component modified Camassa-Holm equation are provided. It is shown that these equations arise from non-streching invariant curve flows respectively in the three-dimensional Euclidean geometry, the two-dimensional Möbius sphere and n-dimensional sphere Sn(1). Integrability to these systems is also studied.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149204
citation_txt Multi-Component Integrable Systems and Invariant Curve Flows in Certain Geometries / C. Qu, J. Song, R. Yao // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 60 назв. — англ.
work_keys_str_mv AT quc multicomponentintegrablesystemsandinvariantcurveflowsincertaingeometries
AT songj multicomponentintegrablesystemsandinvariantcurveflowsincertaingeometries
AT yaor multicomponentintegrablesystemsandinvariantcurveflowsincertaingeometries
first_indexed 2025-12-07T15:39:54Z
last_indexed 2025-12-07T15:39:54Z
_version_ 1850864560577183744