Geometry of Optimal Control for Control-Affine Systems

Motivated by the ubiquity of control-affine systems in optimal control theory, we investigate the geometry of point-affine control systems with metric structures in dimensions two and three. We compute local isometric invariants for point-affine distributions of constant type with metric structures...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2013
Автори: Clelland, J.N., Moseley, C.G., Wilkens, G.R.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149206
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Geometry of Optimal Control for Control-Affine Systems / J.N. Clelland, C.G. Moseley, G.R. Wilkens // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 6 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149206
record_format dspace
spelling Clelland, J.N.
Moseley, C.G.
Wilkens, G.R.
2019-02-19T18:35:52Z
2019-02-19T18:35:52Z
2013
Geometry of Optimal Control for Control-Affine Systems / J.N. Clelland, C.G. Moseley, G.R. Wilkens // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 6 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 58A30; 53C17; 58A15; 53C10
DOI: http://dx.doi.org/10.3842/SIGMA.2013.034
https://nasplib.isofts.kiev.ua/handle/123456789/149206
Motivated by the ubiquity of control-affine systems in optimal control theory, we investigate the geometry of point-affine control systems with metric structures in dimensions two and three. We compute local isometric invariants for point-affine distributions of constant type with metric structures for systems with 2 states and 1 control and systems with 3 states and 1 control, and use Pontryagin's maximum principle to find geodesic trajectories for homogeneous examples. Even in these low dimensions, the behavior of these systems is surprisingly rich and varied.
This research was supported in part by NSF grants DMS-0908456 and DMS-1206272. We would like to thank the referees for many helpful suggestions, which significantly improved the organization and exposition of this paper.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Geometry of Optimal Control for Control-Affine Systems
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Geometry of Optimal Control for Control-Affine Systems
spellingShingle Geometry of Optimal Control for Control-Affine Systems
Clelland, J.N.
Moseley, C.G.
Wilkens, G.R.
title_short Geometry of Optimal Control for Control-Affine Systems
title_full Geometry of Optimal Control for Control-Affine Systems
title_fullStr Geometry of Optimal Control for Control-Affine Systems
title_full_unstemmed Geometry of Optimal Control for Control-Affine Systems
title_sort geometry of optimal control for control-affine systems
author Clelland, J.N.
Moseley, C.G.
Wilkens, G.R.
author_facet Clelland, J.N.
Moseley, C.G.
Wilkens, G.R.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Motivated by the ubiquity of control-affine systems in optimal control theory, we investigate the geometry of point-affine control systems with metric structures in dimensions two and three. We compute local isometric invariants for point-affine distributions of constant type with metric structures for systems with 2 states and 1 control and systems with 3 states and 1 control, and use Pontryagin's maximum principle to find geodesic trajectories for homogeneous examples. Even in these low dimensions, the behavior of these systems is surprisingly rich and varied.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149206
citation_txt Geometry of Optimal Control for Control-Affine Systems / J.N. Clelland, C.G. Moseley, G.R. Wilkens // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT clellandjn geometryofoptimalcontrolforcontrolaffinesystems
AT moseleycg geometryofoptimalcontrolforcontrolaffinesystems
AT wilkensgr geometryofoptimalcontrolforcontrolaffinesystems
first_indexed 2025-12-07T16:37:57Z
last_indexed 2025-12-07T16:37:57Z
_version_ 1850868213051555840