On the N-Solitons Solutions in the Novikov-Veselov Equation

We construct the N-solitons solution in the Novikov-Veselov equation from the extended Moutard transformation and the Pfaffian structure. Also, the corresponding wave functions are obtained explicitly. As a result, the property characterizing the N-solitons wave function is proved using the Pfaffian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2013
1. Verfasser: Chang, J.-H.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149211
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the N-Solitons Solutions in the Novikov-Veselov Equation / J.-H. Chang // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 41 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149211
record_format dspace
spelling Chang, J.-H.
2019-02-19T18:45:34Z
2019-02-19T18:45:34Z
2013
On the N-Solitons Solutions in the Novikov-Veselov Equation / J.-H. Chang // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 41 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 35C08; 35A22
DOI: http://dx.doi.org/10.3842/SIGMA.2013.006
https://nasplib.isofts.kiev.ua/handle/123456789/149211
We construct the N-solitons solution in the Novikov-Veselov equation from the extended Moutard transformation and the Pfaffian structure. Also, the corresponding wave functions are obtained explicitly. As a result, the property characterizing the N-solitons wave function is proved using the Pfaffian expansion. This property corresponding to the discrete scattering data for N-solitons solution is obtained in [arXiv:0912.2155] from the ∂¯¯¯-dressing method.
This work is supported in part by the National Science Council of Taiwan under Grant No. 100-2115-M-606-001.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
On the N-Solitons Solutions in the Novikov-Veselov Equation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the N-Solitons Solutions in the Novikov-Veselov Equation
spellingShingle On the N-Solitons Solutions in the Novikov-Veselov Equation
Chang, J.-H.
title_short On the N-Solitons Solutions in the Novikov-Veselov Equation
title_full On the N-Solitons Solutions in the Novikov-Veselov Equation
title_fullStr On the N-Solitons Solutions in the Novikov-Veselov Equation
title_full_unstemmed On the N-Solitons Solutions in the Novikov-Veselov Equation
title_sort on the n-solitons solutions in the novikov-veselov equation
author Chang, J.-H.
author_facet Chang, J.-H.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We construct the N-solitons solution in the Novikov-Veselov equation from the extended Moutard transformation and the Pfaffian structure. Also, the corresponding wave functions are obtained explicitly. As a result, the property characterizing the N-solitons wave function is proved using the Pfaffian expansion. This property corresponding to the discrete scattering data for N-solitons solution is obtained in [arXiv:0912.2155] from the ∂¯¯¯-dressing method.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149211
citation_txt On the N-Solitons Solutions in the Novikov-Veselov Equation / J.-H. Chang // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 41 назв. — англ.
work_keys_str_mv AT changjh onthensolitonssolutionsinthenovikovveselovequation
first_indexed 2025-11-27T18:46:57Z
last_indexed 2025-11-27T18:46:57Z
_version_ 1850852662951542784