Specialized Orthonormal Frames and Embedding
We discuss some specializations of the frames of flat orthonormal frame bundles over geometries of indefinite signature, and the resulting symmetries of families of embedded Riemannian or pseudo-Riemannian geometries. The specializations are closed sets of linear constraints on the connection 1-form...
Збережено в:
| Опубліковано в: : | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Дата: | 2013 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут математики НАН України
2013
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/149215 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Specialized Orthonormal Frames and Embedding / F.B. Estabrook // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 6 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | We discuss some specializations of the frames of flat orthonormal frame bundles over geometries of indefinite signature, and the resulting symmetries of families of embedded Riemannian or pseudo-Riemannian geometries. The specializations are closed sets of linear constraints on the connection 1-forms of the framing. The embeddings can be isometric, as in minimal surfaces or Regge-Teitelboim gravity, or torsion-free, as in Einstein vacuum gravity. Involutive exterior differential systems are given, and their Cartan character tables calculated to express the well-posedness of the underlying partial differential embedding and specialization equations.
|
|---|---|
| ISSN: | 1815-0659 |