Specialized Orthonormal Frames and Embedding

We discuss some specializations of the frames of flat orthonormal frame bundles over geometries of indefinite signature, and the resulting symmetries of families of embedded Riemannian or pseudo-Riemannian geometries. The specializations are closed sets of linear constraints on the connection 1-form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2013
1. Verfasser: Estabrook, F.B.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149215
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Specialized Orthonormal Frames and Embedding / F.B. Estabrook // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149215
record_format dspace
spelling Estabrook, F.B.
2019-02-19T18:48:06Z
2019-02-19T18:48:06Z
2013
Specialized Orthonormal Frames and Embedding / F.B. Estabrook // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 6 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 83C20; 57R40; 58A15
DOI: http://dx.doi.org/10.3842/SIGMA.2013.012
https://nasplib.isofts.kiev.ua/handle/123456789/149215
We discuss some specializations of the frames of flat orthonormal frame bundles over geometries of indefinite signature, and the resulting symmetries of families of embedded Riemannian or pseudo-Riemannian geometries. The specializations are closed sets of linear constraints on the connection 1-forms of the framing. The embeddings can be isometric, as in minimal surfaces or Regge-Teitelboim gravity, or torsion-free, as in Einstein vacuum gravity. Involutive exterior differential systems are given, and their Cartan character tables calculated to express the well-posedness of the underlying partial differential embedding and specialization equations.
This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html. I thank the JPL Of fice of the Chief Scientist for a visiting appointment during which this research was carried out, and the Science Division for hospitality. My colleagues John W. Armstrong, Curt Cutler, Massimo Tinto and Michele Vallisneri gave constant stimulus and support.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Specialized Orthonormal Frames and Embedding
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Specialized Orthonormal Frames and Embedding
spellingShingle Specialized Orthonormal Frames and Embedding
Estabrook, F.B.
title_short Specialized Orthonormal Frames and Embedding
title_full Specialized Orthonormal Frames and Embedding
title_fullStr Specialized Orthonormal Frames and Embedding
title_full_unstemmed Specialized Orthonormal Frames and Embedding
title_sort specialized orthonormal frames and embedding
author Estabrook, F.B.
author_facet Estabrook, F.B.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We discuss some specializations of the frames of flat orthonormal frame bundles over geometries of indefinite signature, and the resulting symmetries of families of embedded Riemannian or pseudo-Riemannian geometries. The specializations are closed sets of linear constraints on the connection 1-forms of the framing. The embeddings can be isometric, as in minimal surfaces or Regge-Teitelboim gravity, or torsion-free, as in Einstein vacuum gravity. Involutive exterior differential systems are given, and their Cartan character tables calculated to express the well-posedness of the underlying partial differential embedding and specialization equations.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149215
citation_txt Specialized Orthonormal Frames and Embedding / F.B. Estabrook // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT estabrookfb specializedorthonormalframesandembedding
first_indexed 2025-12-07T16:56:25Z
last_indexed 2025-12-07T16:56:25Z
_version_ 1850869374309629952