The Construction of Spin Foam Vertex Amplitudes

Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry, Integrability and Geometry: Methods and Applications
Date:2013
Main Authors: Bianchi, E., Hellmann, F.
Format: Article
Language:English
Published: Інститут математики НАН України 2013
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/149216
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The Construction of Spin Foam Vertex Amplitudes / E. Bianchi, F. Hellmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 105 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Spin foam vertex amplitudes are the key ingredient of spin foam models for quantum gravity. These fall into the realm of discretized path integral, and can be seen as generalized lattice gauge theories. They can be seen as an attempt at a 4-dimensional generalization of the Ponzano-Regge model for 3d quantum gravity. We motivate and review the construction of the vertex amplitudes of recent spin foam models, giving two different and complementary perspectives of this construction. The first proceeds by extracting geometric configurations from a topological theory of the BF type, and can be seen to be in the tradition of the work of Barrett, Crane, Freidel and Krasnov. The second keeps closer contact to the structure of Loop Quantum Gravity and tries to identify an appropriate set of constraints to define a Lorentz-invariant interaction of its quanta of space. This approach is in the tradition of the work of Smolin, Markopoulous, Engle, Pereira, Rovelli and Livine.
ISSN:1815-0659