Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations

We present a general solution-generating result within the bidifferential calculus approach to integrable partial differential and difference equations, based on a binary Darboux-type transformation. This is then applied to the non-autonomous chiral model, a certain reduction of which is known to ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2013
Hauptverfasser: Dimakis, A., Müller-Hoissen, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149219
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations / A. Dimakis, F. Müller-Hoissen // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 80 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149219
record_format dspace
spelling Dimakis, A.
Müller-Hoissen, F.
2019-02-19T18:58:49Z
2019-02-19T18:58:49Z
2013
Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations / A. Dimakis, F. Müller-Hoissen // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 80 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37K10; 16E45
DOI: http://dx.doi.org/10.3842/SIGMA.2013.009
https://nasplib.isofts.kiev.ua/handle/123456789/149219
We present a general solution-generating result within the bidifferential calculus approach to integrable partial differential and difference equations, based on a binary Darboux-type transformation. This is then applied to the non-autonomous chiral model, a certain reduction of which is known to appear in the case of the D-dimensional vacuum Einstein equations with D−2 commuting Killing vector fields. A large class of exact solutions is obtained, and the aforementioned reduction is implemented. This results in an alternative to the well-known Belinski-Zakharov formalism. We recover relevant examples of space-times in dimensions four (Kerr-NUT, Tomimatsu-Sato) and five (single and double Myers-Perry black holes, black saturn, bicycling black rings).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations
spellingShingle Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations
Dimakis, A.
Müller-Hoissen, F.
title_short Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations
title_full Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations
title_fullStr Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations
title_full_unstemmed Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations
title_sort binary darboux transformations in bidifferential calculus and integrable reductions of vacuum einstein equations
author Dimakis, A.
Müller-Hoissen, F.
author_facet Dimakis, A.
Müller-Hoissen, F.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description We present a general solution-generating result within the bidifferential calculus approach to integrable partial differential and difference equations, based on a binary Darboux-type transformation. This is then applied to the non-autonomous chiral model, a certain reduction of which is known to appear in the case of the D-dimensional vacuum Einstein equations with D−2 commuting Killing vector fields. A large class of exact solutions is obtained, and the aforementioned reduction is implemented. This results in an alternative to the well-known Belinski-Zakharov formalism. We recover relevant examples of space-times in dimensions four (Kerr-NUT, Tomimatsu-Sato) and five (single and double Myers-Perry black holes, black saturn, bicycling black rings).
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149219
citation_txt Binary Darboux Transformations in Bidifferential Calculus and Integrable Reductions of Vacuum Einstein Equations / A. Dimakis, F. Müller-Hoissen // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 80 назв. — англ.
work_keys_str_mv AT dimakisa binarydarbouxtransformationsinbidifferentialcalculusandintegrablereductionsofvacuumeinsteinequations
AT mullerhoissenf binarydarbouxtransformationsinbidifferentialcalculusandintegrablereductionsofvacuumeinsteinequations
first_indexed 2025-12-01T09:31:07Z
last_indexed 2025-12-01T09:31:07Z
_version_ 1850859861952167936