A Generalization of the Hopf-Cole Transformation

A generalization of the Hopf-Cole transformation and its relation to the Burgers equation of integer order and the diffusion equation with quadratic nonlinearity are discussed. The explicit form of a particular analytical solution is presented. The existence of the travelling wave solution and the i...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2013
Автор: Miškinis, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149222
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Generalization of the Hopf-Cole Transformation / P. Miškinis // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 43 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149222
record_format dspace
spelling Miškinis, P.
2019-02-19T18:59:53Z
2019-02-19T18:59:53Z
2013
A Generalization of the Hopf-Cole Transformation / P. Miškinis // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 43 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 26A33; 35K55; 45K05
DOI: http://dx.doi.org/10.3842/SIGMA.2013.016
https://nasplib.isofts.kiev.ua/handle/123456789/149222
A generalization of the Hopf-Cole transformation and its relation to the Burgers equation of integer order and the diffusion equation with quadratic nonlinearity are discussed. The explicit form of a particular analytical solution is presented. The existence of the travelling wave solution and the interaction of nonlocal perturbation are considered. The nonlocal generalizations of the one-dimensional diffusion equation with quadratic nonlinearity and of the Burgers equation are analyzed.
This paper is a contribution to the Special Issue “Geometrical Methods in Mathematical Physics”. The full collection is available at http://www.emis.de/journals/SIGMA/GMMP2012.html. The author would like to express his gratitude to Professors B.A. Dubrovin, M. Pavlov and L. Alaniya for the invitation and kind hospitality during the Conference “Geometrical Methods in Mathematical Physics” (Moscow State University, December 12–17, 2011).
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Generalization of the Hopf-Cole Transformation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Generalization of the Hopf-Cole Transformation
spellingShingle A Generalization of the Hopf-Cole Transformation
Miškinis, P.
title_short A Generalization of the Hopf-Cole Transformation
title_full A Generalization of the Hopf-Cole Transformation
title_fullStr A Generalization of the Hopf-Cole Transformation
title_full_unstemmed A Generalization of the Hopf-Cole Transformation
title_sort generalization of the hopf-cole transformation
author Miškinis, P.
author_facet Miškinis, P.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A generalization of the Hopf-Cole transformation and its relation to the Burgers equation of integer order and the diffusion equation with quadratic nonlinearity are discussed. The explicit form of a particular analytical solution is presented. The existence of the travelling wave solution and the interaction of nonlocal perturbation are considered. The nonlocal generalizations of the one-dimensional diffusion equation with quadratic nonlinearity and of the Burgers equation are analyzed.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149222
citation_txt A Generalization of the Hopf-Cole Transformation / P. Miškinis // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 43 назв. — англ.
work_keys_str_mv AT miskinisp ageneralizationofthehopfcoletransformation
AT miskinisp generalizationofthehopfcoletransformation
first_indexed 2025-12-07T20:46:33Z
last_indexed 2025-12-07T20:46:33Z
_version_ 1850883853187547136