The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas

To every Darboux integrable system there is an associated Lie group G which is a fundamental invariant of the system and which we call the Vessiot group. This article shows that solving the Cauchy problem for a Darboux integrable partial differential equation can be reduced to solving an equation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2013
Hauptverfasser: Anderson, I.M., Fels, M.E.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149223
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas / I.M. Anderson, M.E. Fels // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149223
record_format dspace
spelling Anderson, I.M.
Fels, M.E.
2019-02-19T19:00:11Z
2019-02-19T19:00:11Z
2013
The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas / I.M. Anderson, M.E. Fels // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 58A15; 35L52; 58J70; 35A30; 34A26
DOI: http://dx.doi.org/10.3842/SIGMA.2013.017
https://nasplib.isofts.kiev.ua/handle/123456789/149223
To every Darboux integrable system there is an associated Lie group G which is a fundamental invariant of the system and which we call the Vessiot group. This article shows that solving the Cauchy problem for a Darboux integrable partial differential equation can be reduced to solving an equation of Lie type for the Vessiot group G. If the Vessiot group G is solvable then the Cauchy problem can be solved by quadratures. This allows us to give explicit integral formulas, similar to the well known d'Alembert's formula for the wave equation, to the initial value problem with generic non-characteristic initial data.
This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas
spellingShingle The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas
Anderson, I.M.
Fels, M.E.
title_short The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas
title_full The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas
title_fullStr The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas
title_full_unstemmed The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas
title_sort cauchy problem for darboux integrable systems and non-linear d'alembert formulas
author Anderson, I.M.
Fels, M.E.
author_facet Anderson, I.M.
Fels, M.E.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description To every Darboux integrable system there is an associated Lie group G which is a fundamental invariant of the system and which we call the Vessiot group. This article shows that solving the Cauchy problem for a Darboux integrable partial differential equation can be reduced to solving an equation of Lie type for the Vessiot group G. If the Vessiot group G is solvable then the Cauchy problem can be solved by quadratures. This allows us to give explicit integral formulas, similar to the well known d'Alembert's formula for the wave equation, to the initial value problem with generic non-characteristic initial data.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149223
citation_txt The Cauchy Problem for Darboux Integrable Systems and Non-Linear d'Alembert Formulas / I.M. Anderson, M.E. Fels // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT andersonim thecauchyproblemfordarbouxintegrablesystemsandnonlineardalembertformulas
AT felsme thecauchyproblemfordarbouxintegrablesystemsandnonlineardalembertformulas
AT andersonim cauchyproblemfordarbouxintegrablesystemsandnonlineardalembertformulas
AT felsme cauchyproblemfordarbouxintegrablesystemsandnonlineardalembertformulas
first_indexed 2025-12-07T15:31:11Z
last_indexed 2025-12-07T15:31:11Z
_version_ 1850864012099584001