Bispectrality of the Complementary Bannai-Ito Polynomials

A one-parameter family of operators that have the complementary Bannai-Ito (CBI) polynomials as eigenfunctions is obtained. The CBI polynomials are the kernel partners of the Bannai-Ito polynomials and also correspond to a q→−1 limit of the Askey-Wilson polynomials. The eigenvalue equations for the...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2013
Автори: Genest, V.X., Vinet, L., Zhedanov, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149225
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Bispectrality of the Complementary Bannai-Ito Polynomials / V.X. Genest, L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 31 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149225
record_format dspace
spelling Genest, V.X.
Vinet, L.
Zhedanov, A.
2019-02-19T19:01:13Z
2019-02-19T19:01:13Z
2013
Bispectrality of the Complementary Bannai-Ito Polynomials / V.X. Genest, L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 31 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 33C02; 16G02
DOI: http://dx.doi.org/10.3842/SIGMA.2013.018
https://nasplib.isofts.kiev.ua/handle/123456789/149225
A one-parameter family of operators that have the complementary Bannai-Ito (CBI) polynomials as eigenfunctions is obtained. The CBI polynomials are the kernel partners of the Bannai-Ito polynomials and also correspond to a q→−1 limit of the Askey-Wilson polynomials. The eigenvalue equations for the CBI polynomials are found to involve second order Dunkl shift operators with reflections and exhibit quadratic spectra. The algebra associated to the CBI polynomials is given and seen to be a deformation of the Askey-Wilson algebra with an involution. The relation between the CBI polynomials and the recently discovered dual −1 Hahn and para-Krawtchouk polynomials, as well as their relation with the symmetric Hahn polynomials, is also discussed.
V.X.G. holds a scholarship from Fonds de recherche qu´eb´ecois – nature et technologies (FRQNT). The research of L.V. is supported in part by the Natural Science and Engineering Council of Canada (NSERC). A.Z. would like to thank the Centre de Recherches Math´ematiques (CRM) for its hospitality
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Bispectrality of the Complementary Bannai-Ito Polynomials
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Bispectrality of the Complementary Bannai-Ito Polynomials
spellingShingle Bispectrality of the Complementary Bannai-Ito Polynomials
Genest, V.X.
Vinet, L.
Zhedanov, A.
title_short Bispectrality of the Complementary Bannai-Ito Polynomials
title_full Bispectrality of the Complementary Bannai-Ito Polynomials
title_fullStr Bispectrality of the Complementary Bannai-Ito Polynomials
title_full_unstemmed Bispectrality of the Complementary Bannai-Ito Polynomials
title_sort bispectrality of the complementary bannai-ito polynomials
author Genest, V.X.
Vinet, L.
Zhedanov, A.
author_facet Genest, V.X.
Vinet, L.
Zhedanov, A.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A one-parameter family of operators that have the complementary Bannai-Ito (CBI) polynomials as eigenfunctions is obtained. The CBI polynomials are the kernel partners of the Bannai-Ito polynomials and also correspond to a q→−1 limit of the Askey-Wilson polynomials. The eigenvalue equations for the CBI polynomials are found to involve second order Dunkl shift operators with reflections and exhibit quadratic spectra. The algebra associated to the CBI polynomials is given and seen to be a deformation of the Askey-Wilson algebra with an involution. The relation between the CBI polynomials and the recently discovered dual −1 Hahn and para-Krawtchouk polynomials, as well as their relation with the symmetric Hahn polynomials, is also discussed.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149225
citation_txt Bispectrality of the Complementary Bannai-Ito Polynomials / V.X. Genest, L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 31 назв. — англ.
work_keys_str_mv AT genestvx bispectralityofthecomplementarybannaiitopolynomials
AT vinetl bispectralityofthecomplementarybannaiitopolynomials
AT zhedanova bispectralityofthecomplementarybannaiitopolynomials
first_indexed 2025-12-07T18:19:30Z
last_indexed 2025-12-07T18:19:30Z
_version_ 1850874601566896128