Bispectrality of the Complementary Bannai-Ito Polynomials
A one-parameter family of operators that have the complementary Bannai-Ito (CBI) polynomials as eigenfunctions is obtained. The CBI polynomials are the kernel partners of the Bannai-Ito polynomials and also correspond to a q→−1 limit of the Askey-Wilson polynomials. The eigenvalue equations for the...
Gespeichert in:
| Veröffentlicht in: | Symmetry, Integrability and Geometry: Methods and Applications |
|---|---|
| Datum: | 2013 |
| Hauptverfasser: | Genest, V.X., Vinet, L., Zhedanov, A. |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2013
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/149225 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Bispectrality of the Complementary Bannai-Ito Polynomials / V.X. Genest, L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 31 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineÄhnliche Einträge
-
A ''Continuous'' Limit of the Complementary Bannai-Ito Polynomials: Chihara Polynomials
von: Genest, V.X., et al.
Veröffentlicht: (2014) -
Embeddings of the Racah Algebra into the Bannai-Ito Algebra
von: Genest, V.X., et al.
Veröffentlicht: (2015) -
The Rahman Polynomials Are Bispectral
von: Grünbaum, F.A.
Veröffentlicht: (2007) -
Higher Rank Relations for the Askey-Wilson and q-Bannai-Ito Algebra
von: De Clercq, H.
Veröffentlicht: (2019) -
Orthogonal Polynomials Associated with Complementary Chain Sequences
von: Behera, K.K., et al.
Veröffentlicht: (2016)