A Quasi-Lie Schemes Approach to Second-Order Gambier Equations

A quasi-Lie scheme is a geometric structure that provides t-dependent changes of variables transforming members of an associated family of systems of first-order differential equations into members of the same family. In this note we introduce two quasi-Lie schemes for studying second-order Gambier...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Symmetry, Integrability and Geometry: Methods and Applications
Дата:2013
Автори: Cariñena, J.F., Guha, P., de Lucas, J.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2013
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/149230
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:A Quasi-Lie Schemes Approach to Second-Order Gambier Equations / J.F. Cariñena, P. Guha, L. de Lucas // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 56 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149230
record_format dspace
spelling Cariñena, J.F.
Guha, P.
de Lucas, J.
2019-02-19T19:03:08Z
2019-02-19T19:03:08Z
2013
A Quasi-Lie Schemes Approach to Second-Order Gambier Equations / J.F. Cariñena, P. Guha, L. de Lucas // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 56 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 34A26; 34A05; 34A34; 17B66; 53Z05
DOI: http://dx.doi.org/10.3842/SIGMA.2013.026
https://nasplib.isofts.kiev.ua/handle/123456789/149230
A quasi-Lie scheme is a geometric structure that provides t-dependent changes of variables transforming members of an associated family of systems of first-order differential equations into members of the same family. In this note we introduce two quasi-Lie schemes for studying second-order Gambier equations in a geometric way. This allows us to study the transformation of these equations into simpler canonical forms, which solves a gap in the previous literature, and other relevant differential equations, which leads to derive new constants of motion for families of second-order Gambier equations. Additionally, we describe general solutions of certain second-order Gambier equations in terms of particular solutions of Riccati equations, linear systems, and t-dependent frequency harmonic oscillators.
This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html. The research of J.F. Cari˜nena and J. de Lucas was supported by the Polish National Science Centre under the grant HARMONIA Nr 2012/04/M/ST1/00523. They also acknowledge partial financial support by research projects MTM–2009–11154 (MEC) and E24/1 (DGA). J. de Lucas would like to thank for a research grant FMI40/10 (DGA) to accomplish a research stay in the University of Zaragoza.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
spellingShingle A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
Cariñena, J.F.
Guha, P.
de Lucas, J.
title_short A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
title_full A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
title_fullStr A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
title_full_unstemmed A Quasi-Lie Schemes Approach to Second-Order Gambier Equations
title_sort quasi-lie schemes approach to second-order gambier equations
author Cariñena, J.F.
Guha, P.
de Lucas, J.
author_facet Cariñena, J.F.
Guha, P.
de Lucas, J.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A quasi-Lie scheme is a geometric structure that provides t-dependent changes of variables transforming members of an associated family of systems of first-order differential equations into members of the same family. In this note we introduce two quasi-Lie schemes for studying second-order Gambier equations in a geometric way. This allows us to study the transformation of these equations into simpler canonical forms, which solves a gap in the previous literature, and other relevant differential equations, which leads to derive new constants of motion for families of second-order Gambier equations. Additionally, we describe general solutions of certain second-order Gambier equations in terms of particular solutions of Riccati equations, linear systems, and t-dependent frequency harmonic oscillators.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149230
fulltext
citation_txt A Quasi-Lie Schemes Approach to Second-Order Gambier Equations / J.F. Cariñena, P. Guha, L. de Lucas // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 56 назв. — англ.
work_keys_str_mv AT carinenajf aquasilieschemesapproachtosecondordergambierequations
AT guhap aquasilieschemesapproachtosecondordergambierequations
AT delucasj aquasilieschemesapproachtosecondordergambierequations
AT carinenajf quasilieschemesapproachtosecondordergambierequations
AT guhap quasilieschemesapproachtosecondordergambierequations
AT delucasj quasilieschemesapproachtosecondordergambierequations
first_indexed 2025-11-24T15:04:59Z
last_indexed 2025-11-24T15:04:59Z
_version_ 1850847335471382528