G-Strands and Peakon Collisions on Diff(R)

A G-strand is a map g: R×R→G for a Lie group G that follows from Hamilton's principle for a certain class of G-invariant Lagrangians. Some G-strands on finite-dimensional groups satisfy 1+1 space-time evolutionary equations that admit soliton solutions as completely integrable Hamiltonian syste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2013
Hauptverfasser: Holm, D.D., Ivanov, R.I.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149231
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:G-Strands and Peakon Collisions on Diff(R) / D.D. Holm, R.I. Ivanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 32 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149231
record_format dspace
spelling Holm, D.D.
Ivanov, R.I.
2019-02-19T19:03:30Z
2019-02-19T19:03:30Z
2013
G-Strands and Peakon Collisions on Diff(R) / D.D. Holm, R.I. Ivanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 32 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 37J15; 37K05; 35R01
DOI: http://dx.doi.org/10.3842/SIGMA.2013.027
https://nasplib.isofts.kiev.ua/handle/123456789/149231
A G-strand is a map g: R×R→G for a Lie group G that follows from Hamilton's principle for a certain class of G-invariant Lagrangians. Some G-strands on finite-dimensional groups satisfy 1+1 space-time evolutionary equations that admit soliton solutions as completely integrable Hamiltonian systems. For example, the SO(3)-strand equations may be regarded physically as integrable dynamics for solitons on a continuous spin chain. Previous work has shown that G-strands for diffeomorphisms on the real line possess solutions with singular support (e.g. peakons). This paper studies collisions of such singular solutions of G-strands when G=Diff(R) is the group of diffeomorphisms of the real line R, for which the group product is composition of smooth invertible functions. In the case of peakon-antipeakon collisions, the solution reduces to solving either Laplace's equation or the wave equation (depending on a sign in the Lagrangian) and is written in terms of their solutions. We also consider the complexified systems of G-strand equations for G=Diff(R) corresponding to a harmonic map g: C→Diff(R) and find explicit expressions for its peakon-antipeakon solutions, as well.
This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html. We thank our friends A.M. Bloch, C.J. Cotter, F. Gay-Balmaz, A. Iserles, J.R. Percival, T.S. Ratiu and C. Tronci for their kind encouragement and thoughtful remarks during the course of this work. We are thankful also to Dr. Sergey Kushnarev and an anonymous referee whose comments and suggestions have helped us a lot in the revision of this paper. DDH gratefully acknowledges partial support by the Royal Society of London’s Wolfson Award scheme and the European Research Council’s Advanced Grant 267382 FCCA. RII is supported by the Science Foundation Ireland (SFI), under Grant No. 09/RFP/MTH2144.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
G-Strands and Peakon Collisions on Diff(R)
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title G-Strands and Peakon Collisions on Diff(R)
spellingShingle G-Strands and Peakon Collisions on Diff(R)
Holm, D.D.
Ivanov, R.I.
title_short G-Strands and Peakon Collisions on Diff(R)
title_full G-Strands and Peakon Collisions on Diff(R)
title_fullStr G-Strands and Peakon Collisions on Diff(R)
title_full_unstemmed G-Strands and Peakon Collisions on Diff(R)
title_sort g-strands and peakon collisions on diff(r)
author Holm, D.D.
Ivanov, R.I.
author_facet Holm, D.D.
Ivanov, R.I.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description A G-strand is a map g: R×R→G for a Lie group G that follows from Hamilton's principle for a certain class of G-invariant Lagrangians. Some G-strands on finite-dimensional groups satisfy 1+1 space-time evolutionary equations that admit soliton solutions as completely integrable Hamiltonian systems. For example, the SO(3)-strand equations may be regarded physically as integrable dynamics for solitons on a continuous spin chain. Previous work has shown that G-strands for diffeomorphisms on the real line possess solutions with singular support (e.g. peakons). This paper studies collisions of such singular solutions of G-strands when G=Diff(R) is the group of diffeomorphisms of the real line R, for which the group product is composition of smooth invertible functions. In the case of peakon-antipeakon collisions, the solution reduces to solving either Laplace's equation or the wave equation (depending on a sign in the Lagrangian) and is written in terms of their solutions. We also consider the complexified systems of G-strand equations for G=Diff(R) corresponding to a harmonic map g: C→Diff(R) and find explicit expressions for its peakon-antipeakon solutions, as well.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149231
citation_txt G-Strands and Peakon Collisions on Diff(R) / D.D. Holm, R.I. Ivanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 32 назв. — англ.
work_keys_str_mv AT holmdd gstrandsandpeakoncollisionsondiffr
AT ivanovri gstrandsandpeakoncollisionsondiffr
first_indexed 2025-12-07T17:02:48Z
last_indexed 2025-12-07T17:02:48Z
_version_ 1850869776639852544