Solving Local Equivalence Problems with the Equivariant Moving Frame Method

Given a Lie pseudo-group action, an equivariant moving frame exists in the neighborhood of a submanifold jet provided the action is free and regular. For local equivalence problems the freeness requirement cannot always be satisfied and in this paper we show that, with the appropriate modifications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry, Integrability and Geometry: Methods and Applications
Datum:2013
1. Verfasser: Valiquette, F.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут математики НАН України 2013
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/149233
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Solving Local Equivalence Problems with the Equivariant Moving Frame Method / F. Valiquette // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 42 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-149233
record_format dspace
spelling Valiquette, F.
2019-02-19T19:04:08Z
2019-02-19T19:04:08Z
2013
Solving Local Equivalence Problems with the Equivariant Moving Frame Method / F. Valiquette // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 42 назв. — англ.
1815-0659
2010 Mathematics Subject Classification: 53A55; 58A15
DOI: http://dx.doi.org/10.3842/SIGMA.2013.029
https://nasplib.isofts.kiev.ua/handle/123456789/149233
Given a Lie pseudo-group action, an equivariant moving frame exists in the neighborhood of a submanifold jet provided the action is free and regular. For local equivalence problems the freeness requirement cannot always be satisfied and in this paper we show that, with the appropriate modifications and assumptions, the equivariant moving frame constructions extend to submanifold jets where the pseudo-group does not act freely at any order. Once this is done, we review the solution to the local equivalence problem of submanifolds within the equivariant moving frame framework. This offers an alternative approach to Cartan's equivalence method based on the theory of G-structures.
This paper is a contribution to the Special Issue “Symmetries of Dif ferential Equations: Frames, Invariants and Applications”. The full collection is available at http://www.emis.de/journals/SIGMA/SDE2012.html.
en
Інститут математики НАН України
Symmetry, Integrability and Geometry: Methods and Applications
Solving Local Equivalence Problems with the Equivariant Moving Frame Method
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Solving Local Equivalence Problems with the Equivariant Moving Frame Method
spellingShingle Solving Local Equivalence Problems with the Equivariant Moving Frame Method
Valiquette, F.
title_short Solving Local Equivalence Problems with the Equivariant Moving Frame Method
title_full Solving Local Equivalence Problems with the Equivariant Moving Frame Method
title_fullStr Solving Local Equivalence Problems with the Equivariant Moving Frame Method
title_full_unstemmed Solving Local Equivalence Problems with the Equivariant Moving Frame Method
title_sort solving local equivalence problems with the equivariant moving frame method
author Valiquette, F.
author_facet Valiquette, F.
publishDate 2013
language English
container_title Symmetry, Integrability and Geometry: Methods and Applications
publisher Інститут математики НАН України
format Article
description Given a Lie pseudo-group action, an equivariant moving frame exists in the neighborhood of a submanifold jet provided the action is free and regular. For local equivalence problems the freeness requirement cannot always be satisfied and in this paper we show that, with the appropriate modifications and assumptions, the equivariant moving frame constructions extend to submanifold jets where the pseudo-group does not act freely at any order. Once this is done, we review the solution to the local equivalence problem of submanifolds within the equivariant moving frame framework. This offers an alternative approach to Cartan's equivalence method based on the theory of G-structures.
issn 1815-0659
url https://nasplib.isofts.kiev.ua/handle/123456789/149233
citation_txt Solving Local Equivalence Problems with the Equivariant Moving Frame Method / F. Valiquette // Symmetry, Integrability and Geometry: Methods and Applications. — 2013. — Т. 9. — Бібліогр.: 42 назв. — англ.
work_keys_str_mv AT valiquettef solvinglocalequivalenceproblemswiththeequivariantmovingframemethod
first_indexed 2025-12-07T18:03:09Z
last_indexed 2025-12-07T18:03:09Z
_version_ 1850873573400379392